Metamath Proof Explorer


Theorem eulerpartlemo

Description: Lemma for eulerpart : O is the set of odd partitions of N . (Contributed by Thierry Arnoux, 10-Aug-2017)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
Assertion eulerpartlemo ( 𝐴𝑂 ↔ ( 𝐴𝑃 ∧ ∀ 𝑛 ∈ ( 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) )

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 cnveq ( 𝑔 = 𝐴 𝑔 = 𝐴 )
5 4 imaeq1d ( 𝑔 = 𝐴 → ( 𝑔 “ ℕ ) = ( 𝐴 “ ℕ ) )
6 5 raleqdv ( 𝑔 = 𝐴 → ( ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ∀ 𝑛 ∈ ( 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
7 6 2 elrab2 ( 𝐴𝑂 ↔ ( 𝐴𝑃 ∧ ∀ 𝑛 ∈ ( 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) )