Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
elin |
⊢ ( ℎ ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ) |
12 |
11
|
anbi1i |
⊢ ( ( ℎ ∈ ( 𝑇 ∩ 𝑅 ) ∧ ℎ ∈ 𝑃 ) ↔ ( ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ∧ ℎ ∈ 𝑃 ) ) |
13 |
|
elin |
⊢ ( ℎ ∈ ( ( 𝑇 ∩ 𝑅 ) ∩ 𝑃 ) ↔ ( ℎ ∈ ( 𝑇 ∩ 𝑅 ) ∧ ℎ ∈ 𝑃 ) ) |
14 |
1 2 3
|
eulerpartlemo |
⊢ ( ℎ ∈ 𝑂 ↔ ( ℎ ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
15 |
|
cnveq |
⊢ ( 𝑓 = ℎ → ◡ 𝑓 = ◡ ℎ ) |
16 |
15
|
imaeq1d |
⊢ ( 𝑓 = ℎ → ( ◡ 𝑓 “ ℕ ) = ( ◡ ℎ “ ℕ ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑓 = ℎ → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
18 |
|
fveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 𝑘 ) = ( ℎ ‘ 𝑘 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = ( ( ℎ ‘ 𝑘 ) · 𝑘 ) ) |
20 |
19
|
sumeq2sdv |
⊢ ( 𝑓 = ℎ → Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( ℎ ‘ 𝑘 ) · 𝑘 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑓 = ℎ → ( Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ℕ ( ( ℎ ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
22 |
17 21
|
anbi12d |
⊢ ( 𝑓 = ℎ → ( ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ◡ ℎ “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( ℎ ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ) |
23 |
22 1
|
elrab2 |
⊢ ( ℎ ∈ 𝑃 ↔ ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ( ◡ ℎ “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( ℎ ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ) |
24 |
23
|
simplbi |
⊢ ( ℎ ∈ 𝑃 → ℎ ∈ ( ℕ0 ↑m ℕ ) ) |
25 |
|
cnvimass |
⊢ ( ◡ ℎ “ ℕ ) ⊆ dom ℎ |
26 |
|
nn0ex |
⊢ ℕ0 ∈ V |
27 |
|
nnex |
⊢ ℕ ∈ V |
28 |
26 27
|
elmap |
⊢ ( ℎ ∈ ( ℕ0 ↑m ℕ ) ↔ ℎ : ℕ ⟶ ℕ0 ) |
29 |
|
fdm |
⊢ ( ℎ : ℕ ⟶ ℕ0 → dom ℎ = ℕ ) |
30 |
28 29
|
sylbi |
⊢ ( ℎ ∈ ( ℕ0 ↑m ℕ ) → dom ℎ = ℕ ) |
31 |
25 30
|
sseqtrid |
⊢ ( ℎ ∈ ( ℕ0 ↑m ℕ ) → ( ◡ ℎ “ ℕ ) ⊆ ℕ ) |
32 |
24 31
|
syl |
⊢ ( ℎ ∈ 𝑃 → ( ◡ ℎ “ ℕ ) ⊆ ℕ ) |
33 |
32
|
sselda |
⊢ ( ( ℎ ∈ 𝑃 ∧ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ) → 𝑛 ∈ ℕ ) |
34 |
33
|
ralrimiva |
⊢ ( ℎ ∈ 𝑃 → ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ) |
35 |
34
|
biantrurd |
⊢ ( ℎ ∈ 𝑃 → ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ) |
36 |
24
|
biantrurd |
⊢ ( ℎ ∈ 𝑃 → ( ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ) ) |
37 |
23
|
simprbi |
⊢ ( ℎ ∈ 𝑃 → ( ( ◡ ℎ “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( ℎ ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
38 |
37
|
simpld |
⊢ ( ℎ ∈ 𝑃 → ( ◡ ℎ “ ℕ ) ∈ Fin ) |
39 |
38
|
biantrud |
⊢ ( ℎ ∈ 𝑃 → ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ↔ ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ∧ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) ) |
40 |
35 36 39
|
3bitrd |
⊢ ( ℎ ∈ 𝑃 → ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ∧ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) ) |
41 |
|
dfss3 |
⊢ ( ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ 𝐽 ) |
42 |
|
breq2 |
⊢ ( 𝑧 = 𝑛 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑛 ) ) |
43 |
42
|
notbid |
⊢ ( 𝑧 = 𝑛 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛 ) ) |
44 |
43 4
|
elrab2 |
⊢ ( 𝑛 ∈ 𝐽 ↔ ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ) |
45 |
44
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ 𝐽 ↔ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ) |
46 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
47 |
41 45 46
|
3bitri |
⊢ ( ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ↔ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
48 |
47
|
anbi2i |
⊢ ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ) ↔ ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ) |
49 |
48
|
anbi1i |
⊢ ( ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ) ∧ ( ◡ ℎ “ ℕ ) ∈ Fin ) ↔ ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ∧ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
50 |
40 49
|
bitr4di |
⊢ ( ℎ ∈ 𝑃 → ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ) ∧ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) ) |
51 |
16
|
sseq1d |
⊢ ( 𝑓 = ℎ → ( ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 ↔ ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ) ) |
52 |
51 9
|
elrab2 |
⊢ ( ℎ ∈ 𝑇 ↔ ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ) ) |
53 |
|
vex |
⊢ ℎ ∈ V |
54 |
53 17 8
|
elab2 |
⊢ ( ℎ ∈ 𝑅 ↔ ( ◡ ℎ “ ℕ ) ∈ Fin ) |
55 |
52 54
|
anbi12i |
⊢ ( ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ↔ ( ( ℎ ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ ℎ “ ℕ ) ⊆ 𝐽 ) ∧ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
56 |
50 55
|
bitr4di |
⊢ ( ℎ ∈ 𝑃 → ( ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ) ) |
57 |
56
|
pm5.32i |
⊢ ( ( ℎ ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ ℎ “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ℎ ∈ 𝑃 ∧ ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ) ) |
58 |
|
ancom |
⊢ ( ( ℎ ∈ 𝑃 ∧ ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ) ↔ ( ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ∧ ℎ ∈ 𝑃 ) ) |
59 |
14 57 58
|
3bitri |
⊢ ( ℎ ∈ 𝑂 ↔ ( ( ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅 ) ∧ ℎ ∈ 𝑃 ) ) |
60 |
12 13 59
|
3bitr4ri |
⊢ ( ℎ ∈ 𝑂 ↔ ℎ ∈ ( ( 𝑇 ∩ 𝑅 ) ∩ 𝑃 ) ) |
61 |
60
|
eqriv |
⊢ 𝑂 = ( ( 𝑇 ∩ 𝑅 ) ∩ 𝑃 ) |