Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
eulerpartlems.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
3 |
1 2
|
eulerpartlemsf |
⊢ 𝑆 : ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ⟶ ℕ0 |
4 |
3
|
ffvelrni |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
|
nndiffz1 |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 → ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) = ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 → ( 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ↔ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ↔ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) ↔ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) |
10 |
|
eldif |
⊢ ( 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ↔ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) |
12 |
11
|
simpld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑡 ∈ ℕ ) |
13 |
1 2
|
eulerpartlemelr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
14 |
13
|
simpld |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
15 |
14
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
16 |
12 15
|
syldan |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
17 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ) |
18 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
19 |
11
|
simprd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) |
20 |
|
simpl |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → 𝑡 ∈ ℕ ) |
21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
22 |
20 21
|
eleqtrdi |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → 𝑡 ∈ ( ℤ≥ ‘ 1 ) ) |
23 |
|
simpr |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
24 |
23
|
nn0zd |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝑆 ‘ 𝐴 ) ∈ ℤ ) |
25 |
|
elfz5 |
⊢ ( ( 𝑡 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ↔ 𝑡 ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
26 |
22 24 25
|
syl2anc |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ↔ 𝑡 ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
27 |
26
|
notbid |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ↔ ¬ 𝑡 ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
28 |
23
|
nn0red |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
29 |
20
|
nnred |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → 𝑡 ∈ ℝ ) |
30 |
28 29
|
ltnled |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ↔ ¬ 𝑡 ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
31 |
27 30
|
bitr4d |
⊢ ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) → ( ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ↔ ( 𝑆 ‘ 𝐴 ) < 𝑡 ) ) |
32 |
31
|
biimpa |
⊢ ( ( ( 𝑡 ∈ ℕ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) ∧ ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( 𝑆 ‘ 𝐴 ) < 𝑡 ) |
33 |
12 18 19 32
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝑆 ‘ 𝐴 ) < 𝑡 ) |
34 |
1 2
|
eulerpartlemsv1 |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑘 = 𝑡 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑡 ) ) |
36 |
|
id |
⊢ ( 𝑘 = 𝑡 → 𝑘 = 𝑡 ) |
37 |
35 36
|
oveq12d |
⊢ ( 𝑘 = 𝑡 → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
38 |
37
|
cbvsumv |
⊢ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) |
39 |
34 38
|
eqtr2di |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( 𝑆 ‘ 𝐴 ) ) |
40 |
|
breq2 |
⊢ ( 𝑡 = 𝑙 → ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ↔ ( 𝑆 ‘ 𝐴 ) < 𝑙 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑡 = 𝑙 → ( 𝐴 ‘ 𝑡 ) = ( 𝐴 ‘ 𝑙 ) ) |
42 |
41
|
breq2d |
⊢ ( 𝑡 = 𝑙 → ( 0 < ( 𝐴 ‘ 𝑡 ) ↔ 0 < ( 𝐴 ‘ 𝑙 ) ) ) |
43 |
40 42
|
anbi12d |
⊢ ( 𝑡 = 𝑙 → ( ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) ) |
44 |
43
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ↔ ∃ 𝑙 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) |
45 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ∃ 𝑙 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
46 |
45
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ∃ 𝑙 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
47 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
48 |
47
|
nn0red |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
49 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → 𝑙 ∈ ℕ ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 𝑙 ∈ ℕ ) |
51 |
50
|
nnred |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 𝑙 ∈ ℝ ) |
52 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → 1 ∈ ℤ ) |
53 |
14
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → 𝐴 : ℕ ⟶ ℕ0 ) |
54 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℕ ) |
55 |
|
eqidd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) ) |
56 |
|
simpr |
⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) ∧ 𝑚 = 𝑡 ) → 𝑚 = 𝑡 ) |
57 |
56
|
fveq2d |
⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) ∧ 𝑚 = 𝑡 ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑡 ) ) |
58 |
57 56
|
oveq12d |
⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) ∧ 𝑚 = 𝑡 ) → ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) = ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
59 |
|
simpr |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℕ ) |
60 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
61 |
59
|
nnnn0d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℕ0 ) |
62 |
60 61
|
nn0mulcld |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ∈ ℕ0 ) |
63 |
55 58 59 62
|
fvmptd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) ‘ 𝑡 ) = ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
64 |
53 54 63
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) ‘ 𝑡 ) = ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
65 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → 𝐴 : ℕ ⟶ ℕ0 ) |
66 |
65
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
67 |
54
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℕ0 ) |
68 |
66 67
|
nn0mulcld |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ∈ ℕ0 ) |
69 |
68
|
nn0red |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ∈ ℝ ) |
70 |
|
fveq2 |
⊢ ( 𝑚 = 𝑡 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑡 ) ) |
71 |
|
id |
⊢ ( 𝑚 = 𝑡 → 𝑚 = 𝑡 ) |
72 |
70 71
|
oveq12d |
⊢ ( 𝑚 = 𝑡 → ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) = ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
73 |
72
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
74 |
68 73
|
fmptd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) : ℕ ⟶ ℕ0 ) |
75 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
76 |
|
fss |
⊢ ( ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) : ℕ ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) : ℕ ⟶ ℂ ) |
77 |
74 75 76
|
sylancl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) : ℕ ⟶ ℂ ) |
78 |
|
nnex |
⊢ ℕ ∈ V |
79 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
80 |
|
eqid |
⊢ ( ℂ ∖ { 0 } ) = ( ℂ ∖ { 0 } ) |
81 |
80
|
ffs2 |
⊢ ( ( ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) : ℕ ⟶ ℂ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) = ( ◡ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) “ ( ℂ ∖ { 0 } ) ) ) |
82 |
78 79 81
|
mp3an12 |
⊢ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) : ℕ ⟶ ℂ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) = ( ◡ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) “ ( ℂ ∖ { 0 } ) ) ) |
83 |
77 82
|
syl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) = ( ◡ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) “ ( ℂ ∖ { 0 } ) ) ) |
84 |
|
frnnn0supp |
⊢ ( ( ℕ ∈ V ∧ 𝐴 : ℕ ⟶ ℕ0 ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ℕ ) ) |
85 |
78 65 84
|
sylancr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ℕ ) ) |
86 |
13
|
simprd |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ∈ Fin ) |
87 |
86
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ◡ 𝐴 “ ℕ ) ∈ Fin ) |
88 |
85 87
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( 𝐴 supp 0 ) ∈ Fin ) |
89 |
78
|
a1i |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → ℕ ∈ V ) |
90 |
79
|
a1i |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 0 ∈ ℕ0 ) |
91 |
|
ffn |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 𝐴 Fn ℕ ) |
92 |
|
simp3 |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) = 0 ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
93 |
92
|
oveq1d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) = 0 ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( 0 · 𝑡 ) ) |
94 |
|
simp2 |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) = 0 ) → 𝑡 ∈ ℕ ) |
95 |
94
|
nncnd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) = 0 ) → 𝑡 ∈ ℂ ) |
96 |
95
|
mul02d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) = 0 ) → ( 0 · 𝑡 ) = 0 ) |
97 |
93 96
|
eqtrd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) = 0 ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = 0 ) |
98 |
73 89 90 91 97
|
suppss3 |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) ⊆ ( 𝐴 supp 0 ) ) |
99 |
65 98
|
syl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) ⊆ ( 𝐴 supp 0 ) ) |
100 |
|
ssfi |
⊢ ( ( ( 𝐴 supp 0 ) ∈ Fin ∧ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) ⊆ ( 𝐴 supp 0 ) ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) ∈ Fin ) |
101 |
88 99 100
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) supp 0 ) ∈ Fin ) |
102 |
83 101
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ◡ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) “ ( ℂ ∖ { 0 } ) ) ∈ Fin ) |
103 |
21 52 77 102
|
fsumcvg4 |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑚 ) · 𝑚 ) ) ) ∈ dom ⇝ ) |
104 |
21 52 64 69 103
|
isumrecl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ∈ ℝ ) |
105 |
104
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ∈ ℝ ) |
106 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) < 𝑙 ) |
107 |
14
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( 𝐴 ‘ 𝑙 ) ∈ ℕ0 ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝐴 ‘ 𝑙 ) ∈ ℕ0 ) |
109 |
108
|
nn0red |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝐴 ‘ 𝑙 ) ∈ ℝ ) |
110 |
109 51
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ∈ ℝ ) |
111 |
50
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 𝑙 ∈ ℕ0 ) |
112 |
111
|
nn0ge0d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 0 ≤ 𝑙 ) |
113 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 0 < ( 𝐴 ‘ 𝑙 ) ) |
114 |
|
elnnnn0b |
⊢ ( ( 𝐴 ‘ 𝑙 ) ∈ ℕ ↔ ( ( 𝐴 ‘ 𝑙 ) ∈ ℕ0 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) |
115 |
|
nnge1 |
⊢ ( ( 𝐴 ‘ 𝑙 ) ∈ ℕ → 1 ≤ ( 𝐴 ‘ 𝑙 ) ) |
116 |
114 115
|
sylbir |
⊢ ( ( ( 𝐴 ‘ 𝑙 ) ∈ ℕ0 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) → 1 ≤ ( 𝐴 ‘ 𝑙 ) ) |
117 |
108 113 116
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 1 ≤ ( 𝐴 ‘ 𝑙 ) ) |
118 |
51 109 112 117
|
lemulge12d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 𝑙 ≤ ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ) |
119 |
107
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( 𝐴 ‘ 𝑙 ) ∈ ℂ ) |
120 |
49
|
nncnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → 𝑙 ∈ ℂ ) |
121 |
119 120
|
mulcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ∈ ℂ ) |
122 |
|
id |
⊢ ( 𝑡 = 𝑙 → 𝑡 = 𝑙 ) |
123 |
41 122
|
oveq12d |
⊢ ( 𝑡 = 𝑙 → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ) |
124 |
123
|
sumsn |
⊢ ( ( 𝑙 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ∈ ℂ ) → Σ 𝑡 ∈ { 𝑙 } ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ) |
125 |
49 121 124
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → Σ 𝑡 ∈ { 𝑙 } ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ) |
126 |
|
snfi |
⊢ { 𝑙 } ∈ Fin |
127 |
126
|
a1i |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → { 𝑙 } ∈ Fin ) |
128 |
49
|
snssd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → { 𝑙 } ⊆ ℕ ) |
129 |
68
|
nn0ge0d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → 0 ≤ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
130 |
21 52 127 128 64 69 129 103
|
isumless |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → Σ 𝑡 ∈ { 𝑙 } ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
131 |
125 130
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ≤ Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) · 𝑙 ) ≤ Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
133 |
51 110 105 118 132
|
letrd |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → 𝑙 ≤ Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
134 |
48 51 105 106 133
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑙 ∈ ℕ ) ∧ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) < Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
135 |
134
|
r19.29an |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ∃ 𝑙 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → ( 𝑆 ‘ 𝐴 ) < Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
136 |
46 135
|
gtned |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ∃ 𝑙 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) ) → Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≠ ( 𝑆 ‘ 𝐴 ) ) |
137 |
136
|
ex |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ∃ 𝑙 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑙 ∧ 0 < ( 𝐴 ‘ 𝑙 ) ) → Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≠ ( 𝑆 ‘ 𝐴 ) ) ) |
138 |
44 137
|
syl5bi |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ∃ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) → Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≠ ( 𝑆 ‘ 𝐴 ) ) ) |
139 |
138
|
necon2bd |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( Σ 𝑡 ∈ ℕ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( 𝑆 ‘ 𝐴 ) → ¬ ∃ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ) ) |
140 |
39 139
|
mpd |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ¬ ∃ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
141 |
|
ralnex |
⊢ ( ∀ 𝑡 ∈ ℕ ¬ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ↔ ¬ ∃ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
142 |
140 141
|
sylibr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ∀ 𝑡 ∈ ℕ ¬ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
143 |
|
imnan |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) < 𝑡 → ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) ↔ ¬ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
144 |
143
|
ralbii |
⊢ ( ∀ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 → ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) ↔ ∀ 𝑡 ∈ ℕ ¬ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 ∧ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
145 |
142 144
|
sylibr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ∀ 𝑡 ∈ ℕ ( ( 𝑆 ‘ 𝐴 ) < 𝑡 → ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
146 |
145
|
r19.21bi |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝑆 ‘ 𝐴 ) < 𝑡 → ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
147 |
146
|
imp |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑆 ‘ 𝐴 ) < 𝑡 ) → ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) |
148 |
17 12 33 147
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) |
149 |
|
nn0re |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → ( 𝐴 ‘ 𝑡 ) ∈ ℝ ) |
150 |
|
0red |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → 0 ∈ ℝ ) |
151 |
149 150
|
lenltd |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → ( ( 𝐴 ‘ 𝑡 ) ≤ 0 ↔ ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) ) |
152 |
|
nn0le0eq0 |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → ( ( 𝐴 ‘ 𝑡 ) ≤ 0 ↔ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
153 |
151 152
|
bitr3d |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → ( ¬ 0 < ( 𝐴 ‘ 𝑡 ) ↔ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
154 |
153
|
biimpa |
⊢ ( ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ∧ ¬ 0 < ( 𝐴 ‘ 𝑡 ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
155 |
16 148 154
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
156 |
8 155
|
sylbir |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |