Metamath Proof Explorer


Theorem eulerpartlemsv1

Description: Lemma for eulerpart . Value of the sum of a partition A . (Contributed by Thierry Arnoux, 26-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
eulerpartlems.s 𝑆 = ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) )
Assertion eulerpartlemsv1 ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → ( 𝑆𝐴 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴𝑘 ) · 𝑘 ) )

Proof

Step Hyp Ref Expression
1 eulerpartlems.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
2 eulerpartlems.s 𝑆 = ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) )
3 2 a1i ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → 𝑆 = ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) ) )
4 simplr ( ( ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑓 = 𝐴 )
5 4 fveq1d ( ( ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) = ( 𝐴𝑘 ) )
6 5 oveq1d ( ( ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓𝑘 ) · 𝑘 ) = ( ( 𝐴𝑘 ) · 𝑘 ) )
7 6 sumeq2dv ( ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) → Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴𝑘 ) · 𝑘 ) )
8 id ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) )
9 sumex Σ 𝑘 ∈ ℕ ( ( 𝐴𝑘 ) · 𝑘 ) ∈ V
10 9 a1i ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → Σ 𝑘 ∈ ℕ ( ( 𝐴𝑘 ) · 𝑘 ) ∈ V )
11 3 7 8 10 fvmptd ( 𝐴 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → ( 𝑆𝐴 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴𝑘 ) · 𝑘 ) )