Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
eulerpartlems.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) ) |
4 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑓 = 𝐴 ) |
5 |
4
|
fveq1d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
6 |
5
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
7 |
6
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑓 = 𝐴 ) → Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
8 |
|
id |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ) |
9 |
|
sumex |
⊢ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ V |
10 |
9
|
a1i |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ V ) |
11 |
3 7 8 10
|
fvmptd |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |