Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
eulerpartlems.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
3 |
1 2
|
eulerpartlemsv1 |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
4 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ℕ ) ⊆ dom 𝐴 |
5 |
1 2
|
eulerpartlemelr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
6 |
5
|
simpld |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
7 |
4 6
|
fssdm |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ⊆ ℕ ) |
8 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
9 |
7
|
sselda |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑘 ∈ ℕ ) |
10 |
8 9
|
ffvelrnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
11 |
9
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑘 ∈ ℕ0 ) |
12 |
10 11
|
nn0mulcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
13 |
12
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℂ ) |
14 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) |
15 |
14
|
eldifad |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝑘 ∈ ℕ ) |
16 |
14
|
eldifbd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ¬ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) |
17 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
18 |
|
ffn |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 𝐴 Fn ℕ ) |
19 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ → ( 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) ) |
21 |
16 20
|
mtbid |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ¬ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) |
22 |
|
imnan |
⊢ ( ( 𝑘 ∈ ℕ → ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ↔ ¬ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝑘 ∈ ℕ → ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) |
24 |
15 23
|
mpd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) |
25 |
17 15
|
ffvelrnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
26 |
|
elnn0 |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ↔ ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
28 |
|
orel1 |
⊢ ( ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ → ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
29 |
24 27 28
|
sylc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = ( 0 · 𝑘 ) ) |
31 |
15
|
nncnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝑘 ∈ ℂ ) |
32 |
31
|
mul02d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 0 · 𝑘 ) = 0 ) |
33 |
30 32
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
34 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
35 |
34
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
36 |
35
|
a1i |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ℕ ⊆ ( ℤ≥ ‘ 1 ) ) |
37 |
7 13 33 36
|
sumss |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
38 |
3 37
|
eqtr4d |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |