Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
eulerpartlems.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
3 |
1 2
|
eulerpartlemsv1 |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
4 |
|
fzssuz |
⊢ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ⊆ ( ℤ≥ ‘ 1 ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
4 5
|
sseqtrri |
⊢ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ⊆ ℕ |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ⊆ ℕ ) |
8 |
1 2
|
eulerpartlemelr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
9 |
8
|
simpld |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
11 |
7
|
sselda |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 𝑘 ∈ ℕ ) |
12 |
10 11
|
ffvelrnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
13 |
12
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
14 |
11
|
nncnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 𝑘 ∈ ℂ ) |
15 |
13 14
|
mulcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℂ ) |
16 |
1 2
|
eulerpartlems |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
17 |
16
|
ralrimiva |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ∀ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ( 𝐴 ‘ 𝑡 ) = 0 ) |
18 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑡 → ( ( 𝐴 ‘ 𝑘 ) = 0 ↔ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
19 |
18
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ( 𝐴 ‘ 𝑘 ) = 0 ↔ ∀ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ( 𝐴 ‘ 𝑡 ) = 0 ) |
20 |
17 19
|
sylibr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ( 𝐴 ‘ 𝑘 ) = 0 ) |
21 |
1 2
|
eulerpartlemsf |
⊢ 𝑆 : ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ⟶ ℕ0 |
22 |
21
|
ffvelrni |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
23 |
|
nndiffz1 |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 → ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) = ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) |
24 |
22 23
|
syl |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) = ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) |
25 |
24
|
raleqdv |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ( 𝐴 ‘ 𝑘 ) = 0 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
26 |
20 25
|
mpbird |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ∀ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ( 𝐴 ‘ 𝑘 ) = 0 ) |
27 |
26
|
r19.21bi |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = ( 0 · 𝑘 ) ) |
29 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) |
30 |
29
|
eldifad |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑘 ∈ ℕ ) |
31 |
30
|
nncnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑘 ∈ ℂ ) |
32 |
31
|
mul02d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 0 · 𝑘 ) = 0 ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
34 |
5
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
35 |
34
|
a1i |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ℕ ⊆ ( ℤ≥ ‘ 1 ) ) |
36 |
7 15 33 35
|
sumss |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
37 |
3 36
|
eqtr4d |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |