Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
elmapi |
⊢ ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) → 𝑜 : 𝐽 ⟶ ℕ0 ) |
11 |
10
|
adantr |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → 𝑜 : 𝐽 ⟶ ℕ0 ) |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
12
|
fconst |
⊢ ( ( ℕ ∖ 𝐽 ) × { 0 } ) : ( ℕ ∖ 𝐽 ) ⟶ { 0 } |
14 |
13
|
a1i |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ( ℕ ∖ 𝐽 ) × { 0 } ) : ( ℕ ∖ 𝐽 ) ⟶ { 0 } ) |
15 |
|
disjdif |
⊢ ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) ) = ∅ |
16 |
15
|
a1i |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) ) = ∅ ) |
17 |
|
fun |
⊢ ( ( ( 𝑜 : 𝐽 ⟶ ℕ0 ∧ ( ( ℕ ∖ 𝐽 ) × { 0 } ) : ( ℕ ∖ 𝐽 ) ⟶ { 0 } ) ∧ ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) ) = ∅ ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ) |
18 |
11 14 16 17
|
syl21anc |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ) |
19 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
20 |
4 19
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
21 |
|
undif |
⊢ ( 𝐽 ⊆ ℕ ↔ ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) = ℕ ) |
22 |
20 21
|
mpbi |
⊢ ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) = ℕ |
23 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
24 |
|
snssi |
⊢ ( 0 ∈ ℕ0 → { 0 } ⊆ ℕ0 ) |
25 |
23 24
|
ax-mp |
⊢ { 0 } ⊆ ℕ0 |
26 |
|
ssequn2 |
⊢ ( { 0 } ⊆ ℕ0 ↔ ( ℕ0 ∪ { 0 } ) = ℕ0 ) |
27 |
25 26
|
mpbi |
⊢ ( ℕ0 ∪ { 0 } ) = ℕ0 |
28 |
22 27
|
feq23i |
⊢ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ↔ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ℕ ⟶ ℕ0 ) |
29 |
18 28
|
sylib |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ℕ ⟶ ℕ0 ) |
30 |
|
nn0ex |
⊢ ℕ0 ∈ V |
31 |
|
nnex |
⊢ ℕ ∈ V |
32 |
30 31
|
elmap |
⊢ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( ℕ0 ↑m ℕ ) ↔ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ℕ ⟶ ℕ0 ) |
33 |
29 32
|
sylibr |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( ℕ0 ↑m ℕ ) ) |
34 |
|
cnvun |
⊢ ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) = ( ◡ 𝑜 ∪ ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) |
35 |
34
|
imaeq1i |
⊢ ( ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) = ( ( ◡ 𝑜 ∪ ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) |
36 |
|
imaundir |
⊢ ( ( ◡ 𝑜 ∪ ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) = ( ( ◡ 𝑜 “ ℕ ) ∪ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) |
37 |
35 36
|
eqtri |
⊢ ( ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) = ( ( ◡ 𝑜 “ ℕ ) ∪ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) |
38 |
|
vex |
⊢ 𝑜 ∈ V |
39 |
|
cnveq |
⊢ ( 𝑓 = 𝑜 → ◡ 𝑓 = ◡ 𝑜 ) |
40 |
39
|
imaeq1d |
⊢ ( 𝑓 = 𝑜 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑜 “ ℕ ) ) |
41 |
40
|
eleq1d |
⊢ ( 𝑓 = 𝑜 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝑜 “ ℕ ) ∈ Fin ) ) |
42 |
38 41 8
|
elab2 |
⊢ ( 𝑜 ∈ 𝑅 ↔ ( ◡ 𝑜 “ ℕ ) ∈ Fin ) |
43 |
42
|
biimpi |
⊢ ( 𝑜 ∈ 𝑅 → ( ◡ 𝑜 “ ℕ ) ∈ Fin ) |
44 |
43
|
adantl |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ◡ 𝑜 “ ℕ ) ∈ Fin ) |
45 |
|
cnvxp |
⊢ ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) = ( { 0 } × ( ℕ ∖ 𝐽 ) ) |
46 |
45
|
dmeqi |
⊢ dom ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) = dom ( { 0 } × ( ℕ ∖ 𝐽 ) ) |
47 |
|
2nn |
⊢ 2 ∈ ℕ |
48 |
|
2z |
⊢ 2 ∈ ℤ |
49 |
|
iddvds |
⊢ ( 2 ∈ ℤ → 2 ∥ 2 ) |
50 |
48 49
|
ax-mp |
⊢ 2 ∥ 2 |
51 |
|
breq2 |
⊢ ( 𝑧 = 2 → ( 2 ∥ 𝑧 ↔ 2 ∥ 2 ) ) |
52 |
51
|
notbid |
⊢ ( 𝑧 = 2 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2 ) ) |
53 |
52 4
|
elrab2 |
⊢ ( 2 ∈ 𝐽 ↔ ( 2 ∈ ℕ ∧ ¬ 2 ∥ 2 ) ) |
54 |
53
|
simprbi |
⊢ ( 2 ∈ 𝐽 → ¬ 2 ∥ 2 ) |
55 |
50 54
|
mt2 |
⊢ ¬ 2 ∈ 𝐽 |
56 |
|
eldif |
⊢ ( 2 ∈ ( ℕ ∖ 𝐽 ) ↔ ( 2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽 ) ) |
57 |
47 55 56
|
mpbir2an |
⊢ 2 ∈ ( ℕ ∖ 𝐽 ) |
58 |
|
ne0i |
⊢ ( 2 ∈ ( ℕ ∖ 𝐽 ) → ( ℕ ∖ 𝐽 ) ≠ ∅ ) |
59 |
|
dmxp |
⊢ ( ( ℕ ∖ 𝐽 ) ≠ ∅ → dom ( { 0 } × ( ℕ ∖ 𝐽 ) ) = { 0 } ) |
60 |
57 58 59
|
mp2b |
⊢ dom ( { 0 } × ( ℕ ∖ 𝐽 ) ) = { 0 } |
61 |
46 60
|
eqtri |
⊢ dom ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) = { 0 } |
62 |
61
|
ineq1i |
⊢ ( dom ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ∩ ℕ ) = ( { 0 } ∩ ℕ ) |
63 |
|
incom |
⊢ ( ℕ ∩ { 0 } ) = ( { 0 } ∩ ℕ ) |
64 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
65 |
|
disjsn |
⊢ ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ ) |
66 |
64 65
|
mpbir |
⊢ ( ℕ ∩ { 0 } ) = ∅ |
67 |
62 63 66
|
3eqtr2i |
⊢ ( dom ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ∩ ℕ ) = ∅ |
68 |
|
imadisj |
⊢ ( ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) = ∅ ↔ ( dom ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ∩ ℕ ) = ∅ ) |
69 |
67 68
|
mpbir |
⊢ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) = ∅ |
70 |
|
0fin |
⊢ ∅ ∈ Fin |
71 |
69 70
|
eqeltri |
⊢ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ∈ Fin |
72 |
|
unfi |
⊢ ( ( ( ◡ 𝑜 “ ℕ ) ∈ Fin ∧ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ∈ Fin ) → ( ( ◡ 𝑜 “ ℕ ) ∪ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) ∈ Fin ) |
73 |
44 71 72
|
sylancl |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ( ◡ 𝑜 “ ℕ ) ∪ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) ∈ Fin ) |
74 |
37 73
|
eqeltrid |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ∈ Fin ) |
75 |
|
cnvimass |
⊢ ( ◡ 𝑜 “ ℕ ) ⊆ dom 𝑜 |
76 |
75 11
|
fssdm |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ◡ 𝑜 “ ℕ ) ⊆ 𝐽 ) |
77 |
|
0ss |
⊢ ∅ ⊆ 𝐽 |
78 |
69 77
|
eqsstri |
⊢ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ⊆ 𝐽 |
79 |
78
|
a1i |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ⊆ 𝐽 ) |
80 |
76 79
|
unssd |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ( ◡ 𝑜 “ ℕ ) ∪ ( ◡ ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) ⊆ 𝐽 ) |
81 |
37 80
|
eqsstrid |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ⊆ 𝐽 ) |
82 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ∈ Fin ∧ ( ◡ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ⊆ 𝐽 ) ) |
83 |
33 74 81 82
|
syl3anbrc |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( 𝑇 ∩ 𝑅 ) ) |
84 |
|
resundir |
⊢ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) = ( ( 𝑜 ↾ 𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) |
85 |
|
ffn |
⊢ ( 𝑜 : 𝐽 ⟶ ℕ0 → 𝑜 Fn 𝐽 ) |
86 |
|
fnresdm |
⊢ ( 𝑜 Fn 𝐽 → ( 𝑜 ↾ 𝐽 ) = 𝑜 ) |
87 |
|
disjdifr |
⊢ ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ∅ |
88 |
|
fnconstg |
⊢ ( 0 ∈ ℕ0 → ( ( ℕ ∖ 𝐽 ) × { 0 } ) Fn ( ℕ ∖ 𝐽 ) ) |
89 |
|
fnresdisj |
⊢ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) Fn ( ℕ ∖ 𝐽 ) → ( ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ↔ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ ) ) |
90 |
23 88 89
|
mp2b |
⊢ ( ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ↔ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ ) |
91 |
87 90
|
mpbi |
⊢ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ |
92 |
91
|
a1i |
⊢ ( 𝑜 Fn 𝐽 → ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ ) |
93 |
86 92
|
uneq12d |
⊢ ( 𝑜 Fn 𝐽 → ( ( 𝑜 ↾ 𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) = ( 𝑜 ∪ ∅ ) ) |
94 |
11 85 93
|
3syl |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ( 𝑜 ↾ 𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) = ( 𝑜 ∪ ∅ ) ) |
95 |
|
un0 |
⊢ ( 𝑜 ∪ ∅ ) = 𝑜 |
96 |
94 95
|
eqtrdi |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ( ( 𝑜 ↾ 𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) = 𝑜 ) |
97 |
84 96
|
eqtr2id |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → 𝑜 = ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) ) |
98 |
|
reseq1 |
⊢ ( 𝑚 = ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) → ( 𝑚 ↾ 𝐽 ) = ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) ) |
99 |
98
|
rspceeqv |
⊢ ( ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) ) → ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑜 = ( 𝑚 ↾ 𝐽 ) ) |
100 |
83 97 99
|
syl2anc |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) → ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑜 = ( 𝑚 ↾ 𝐽 ) ) |
101 |
|
simpr |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → 𝑜 = ( 𝑚 ↾ 𝐽 ) ) |
102 |
|
simpl |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ) |
103 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝑚 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝑚 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑚 “ ℕ ) ⊆ 𝐽 ) ) |
104 |
102 103
|
sylib |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( 𝑚 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝑚 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑚 “ ℕ ) ⊆ 𝐽 ) ) |
105 |
104
|
simp1d |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → 𝑚 ∈ ( ℕ0 ↑m ℕ ) ) |
106 |
30 31
|
elmap |
⊢ ( 𝑚 ∈ ( ℕ0 ↑m ℕ ) ↔ 𝑚 : ℕ ⟶ ℕ0 ) |
107 |
105 106
|
sylib |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → 𝑚 : ℕ ⟶ ℕ0 ) |
108 |
|
fssres |
⊢ ( ( 𝑚 : ℕ ⟶ ℕ0 ∧ 𝐽 ⊆ ℕ ) → ( 𝑚 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
109 |
107 20 108
|
sylancl |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( 𝑚 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
110 |
4 31
|
rabex2 |
⊢ 𝐽 ∈ V |
111 |
30 110
|
elmap |
⊢ ( ( 𝑚 ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ↔ ( 𝑚 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
112 |
109 111
|
sylibr |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( 𝑚 ↾ 𝐽 ) ∈ ( ℕ0 ↑m 𝐽 ) ) |
113 |
101 112
|
eqeltrd |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ) |
114 |
|
ffun |
⊢ ( 𝑚 : ℕ ⟶ ℕ0 → Fun 𝑚 ) |
115 |
|
respreima |
⊢ ( Fun 𝑚 → ( ◡ ( 𝑚 ↾ 𝐽 ) “ ℕ ) = ( ( ◡ 𝑚 “ ℕ ) ∩ 𝐽 ) ) |
116 |
107 114 115
|
3syl |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( ◡ ( 𝑚 ↾ 𝐽 ) “ ℕ ) = ( ( ◡ 𝑚 “ ℕ ) ∩ 𝐽 ) ) |
117 |
104
|
simp2d |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( ◡ 𝑚 “ ℕ ) ∈ Fin ) |
118 |
|
infi |
⊢ ( ( ◡ 𝑚 “ ℕ ) ∈ Fin → ( ( ◡ 𝑚 “ ℕ ) ∩ 𝐽 ) ∈ Fin ) |
119 |
117 118
|
syl |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( ( ◡ 𝑚 “ ℕ ) ∩ 𝐽 ) ∈ Fin ) |
120 |
116 119
|
eqeltrd |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( ◡ ( 𝑚 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) |
121 |
|
vex |
⊢ 𝑚 ∈ V |
122 |
121
|
resex |
⊢ ( 𝑚 ↾ 𝐽 ) ∈ V |
123 |
|
cnveq |
⊢ ( 𝑓 = ( 𝑚 ↾ 𝐽 ) → ◡ 𝑓 = ◡ ( 𝑚 ↾ 𝐽 ) ) |
124 |
123
|
imaeq1d |
⊢ ( 𝑓 = ( 𝑚 ↾ 𝐽 ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ ( 𝑚 ↾ 𝐽 ) “ ℕ ) ) |
125 |
124
|
eleq1d |
⊢ ( 𝑓 = ( 𝑚 ↾ 𝐽 ) → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ ( 𝑚 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) ) |
126 |
122 125 8
|
elab2 |
⊢ ( ( 𝑚 ↾ 𝐽 ) ∈ 𝑅 ↔ ( ◡ ( 𝑚 ↾ 𝐽 ) “ ℕ ) ∈ Fin ) |
127 |
120 126
|
sylibr |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( 𝑚 ↾ 𝐽 ) ∈ 𝑅 ) |
128 |
101 127
|
eqeltrd |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → 𝑜 ∈ 𝑅 ) |
129 |
113 128
|
jca |
⊢ ( ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑜 = ( 𝑚 ↾ 𝐽 ) ) → ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) ) |
130 |
129
|
rexlimiva |
⊢ ( ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑜 = ( 𝑚 ↾ 𝐽 ) → ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) ) |
131 |
100 130
|
impbii |
⊢ ( ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑜 = ( 𝑚 ↾ 𝐽 ) ) |
132 |
131
|
abbii |
⊢ { 𝑜 ∣ ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) } = { 𝑜 ∣ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑜 = ( 𝑚 ↾ 𝐽 ) } |
133 |
|
df-in |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = { 𝑜 ∣ ( 𝑜 ∈ ( ℕ0 ↑m 𝐽 ) ∧ 𝑜 ∈ 𝑅 ) } |
134 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) = ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) |
135 |
134
|
rnmpt |
⊢ ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) = { 𝑜 ∣ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑜 = ( 𝑚 ↾ 𝐽 ) } |
136 |
132 133 135
|
3eqtr4i |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) |