Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
cnveq |
⊢ ( 𝑓 = 𝐴 → ◡ 𝑓 = ◡ 𝐴 ) |
11 |
10
|
imaeq1d |
⊢ ( 𝑓 = 𝐴 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝐴 “ ℕ ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑓 = 𝐴 → ( ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 ↔ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
13 |
12 9
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑇 ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
14 |
11
|
eleq1d |
⊢ ( 𝑓 = 𝐴 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
15 |
14 8
|
elab4g |
⊢ ( 𝐴 ∈ 𝑅 ↔ ( 𝐴 ∈ V ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
16 |
13 15
|
anbi12i |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅 ) ↔ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ∧ ( 𝐴 ∈ V ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) ) |
17 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅 ) ) |
18 |
|
elex |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) → 𝐴 ∈ V ) |
19 |
18
|
pm4.71i |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ 𝐴 ∈ V ) ) |
20 |
19
|
anbi1i |
⊢ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) ↔ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ 𝐴 ∈ V ) ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) ) |
21 |
|
3anass |
⊢ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) ) |
22 |
|
an42 |
⊢ ( ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ∧ ( 𝐴 ∈ V ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) ↔ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ 𝐴 ∈ V ) ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) ) |
23 |
20 21 22
|
3bitr4i |
⊢ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ↔ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ∧ ( 𝐴 ∈ V ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) ) |
24 |
16 17 23
|
3bitr4i |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |