Metamath Proof Explorer


Theorem eulerpartlemt0

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
Assertion eulerpartlemt0 ( 𝐴 ∈ ( 𝑇𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
5 eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
6 eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
7 eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
8 eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
9 eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
10 cnveq ( 𝑓 = 𝐴 𝑓 = 𝐴 )
11 10 imaeq1d ( 𝑓 = 𝐴 → ( 𝑓 “ ℕ ) = ( 𝐴 “ ℕ ) )
12 11 sseq1d ( 𝑓 = 𝐴 → ( ( 𝑓 “ ℕ ) ⊆ 𝐽 ↔ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) )
13 12 9 elrab2 ( 𝐴𝑇 ↔ ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) )
14 11 eleq1d ( 𝑓 = 𝐴 → ( ( 𝑓 “ ℕ ) ∈ Fin ↔ ( 𝐴 “ ℕ ) ∈ Fin ) )
15 14 8 elab4g ( 𝐴𝑅 ↔ ( 𝐴 ∈ V ∧ ( 𝐴 “ ℕ ) ∈ Fin ) )
16 13 15 anbi12i ( ( 𝐴𝑇𝐴𝑅 ) ↔ ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ∧ ( 𝐴 ∈ V ∧ ( 𝐴 “ ℕ ) ∈ Fin ) ) )
17 elin ( 𝐴 ∈ ( 𝑇𝑅 ) ↔ ( 𝐴𝑇𝐴𝑅 ) )
18 elex ( 𝐴 ∈ ( ℕ0m ℕ ) → 𝐴 ∈ V )
19 18 pm4.71i ( 𝐴 ∈ ( ℕ0m ℕ ) ↔ ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ 𝐴 ∈ V ) )
20 19 anbi1i ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ) ↔ ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ 𝐴 ∈ V ) ∧ ( ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ) )
21 3anass ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ↔ ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ) )
22 an42 ( ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ∧ ( 𝐴 ∈ V ∧ ( 𝐴 “ ℕ ) ∈ Fin ) ) ↔ ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ 𝐴 ∈ V ) ∧ ( ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ) )
23 20 21 22 3bitr4i ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ↔ ( ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) ∧ ( 𝐴 ∈ V ∧ ( 𝐴 “ ℕ ) ∈ Fin ) ) )
24 16 17 23 3bitr4i ( 𝐴 ∈ ( 𝑇𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) )