Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
1
|
eulerpartleme |
⊢ ( 𝐴 ∈ 𝑃 ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
3 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ℕ ) ⊆ dom 𝐴 |
4 |
|
fdm |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → dom 𝐴 = ℕ ) |
5 |
3 4
|
sseqtrid |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → ( ◡ 𝐴 “ ℕ ) ⊆ ℕ ) |
6 |
|
simpl |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
7 |
5
|
sselda |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑘 ∈ ℕ ) |
8 |
6 7
|
ffvelrnd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
9 |
7
|
nnnn0d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑘 ∈ ℕ0 ) |
10 |
8 9
|
nn0mulcld |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℂ ) |
12 |
|
simpr |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) |
13 |
12
|
eldifad |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝑘 ∈ ℕ ) |
14 |
12
|
eldifbd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ¬ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ) |
15 |
|
simpl |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
16 |
|
ffn |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 𝐴 Fn ℕ ) |
17 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ → ( 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) ) |
18 |
15 16 17
|
3syl |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) ) |
19 |
14 18
|
mtbid |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ¬ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) |
20 |
|
imnan |
⊢ ( ( 𝑘 ∈ ℕ → ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ↔ ¬ ( 𝑘 ∈ ℕ ∧ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) |
21 |
19 20
|
sylibr |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝑘 ∈ ℕ → ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) ) |
22 |
13 21
|
mpd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ ) |
23 |
15 13
|
ffvelrnd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
24 |
|
elnn0 |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ↔ ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
26 |
|
orel1 |
⊢ ( ¬ ( 𝐴 ‘ 𝑘 ) ∈ ℕ → ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
27 |
22 25 26
|
sylc |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = ( 0 · 𝑘 ) ) |
29 |
13
|
nncnd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → 𝑘 ∈ ℂ ) |
30 |
29
|
mul02d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( 0 · 𝑘 ) = 0 ) |
31 |
28 30
|
eqtrd |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝐴 “ ℕ ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
32 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
33 |
32
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
34 |
33
|
a1i |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → ℕ ⊆ ( ℤ≥ ‘ 1 ) ) |
35 |
5 11 31 34
|
sumss |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
36 |
35
|
eqcomd |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
38 |
37
|
eqeq1d |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) → ( Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
39 |
38
|
pm5.32i |
⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
40 |
|
df-3an |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
41 |
|
df-3an |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
42 |
39 40 41
|
3bitr4i |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
43 |
2 42
|
bitri |
⊢ ( 𝐴 ∈ 𝑃 ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ( ◡ 𝐴 “ ℕ ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |