| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpart.p | ⊢ 𝑃  =  { 𝑓  ∈  ( ℕ0  ↑m  ℕ )  ∣  ( ( ◡ 𝑓  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ℕ ( ( 𝑓 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) } | 
						
							| 2 | 1 | eulerpartleme | ⊢ ( 𝐴  ∈  𝑃  ↔  ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 3 |  | cnvimass | ⊢ ( ◡ 𝐴  “  ℕ )  ⊆  dom  𝐴 | 
						
							| 4 |  | fdm | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  dom  𝐴  =  ℕ ) | 
						
							| 5 | 3 4 | sseqtrid | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  ( ◡ 𝐴  “  ℕ )  ⊆  ℕ ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 7 | 5 | sselda | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) )  →  𝑘  ∈  ℕ ) | 
						
							| 8 | 6 7 | ffvelcdmd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 9 | 7 | nnnn0d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 10 | 8 9 | nn0mulcld | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0cnd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  ∈  ℂ ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) ) | 
						
							| 13 | 12 | eldifad | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 14 | 12 | eldifbd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ¬  𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  𝐴 : ℕ ⟶ ℕ0 ) | 
						
							| 16 |  | ffn | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  𝐴  Fn  ℕ ) | 
						
							| 17 |  | elpreima | ⊢ ( 𝐴  Fn  ℕ  →  ( 𝑘  ∈  ( ◡ 𝐴  “  ℕ )  ↔  ( 𝑘  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ℕ ) ) ) | 
						
							| 18 | 15 16 17 | 3syl | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( 𝑘  ∈  ( ◡ 𝐴  “  ℕ )  ↔  ( 𝑘  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ℕ ) ) ) | 
						
							| 19 | 14 18 | mtbid | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ¬  ( 𝑘  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ℕ ) ) | 
						
							| 20 |  | imnan | ⊢ ( ( 𝑘  ∈  ℕ  →  ¬  ( 𝐴 ‘ 𝑘 )  ∈  ℕ )  ↔  ¬  ( 𝑘  ∈  ℕ  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ℕ ) ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( 𝑘  ∈  ℕ  →  ¬  ( 𝐴 ‘ 𝑘 )  ∈  ℕ ) ) | 
						
							| 22 | 13 21 | mpd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ¬  ( 𝐴 ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 23 | 15 13 | ffvelcdmd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 24 |  | elnn0 | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  ℕ0  ↔  ( ( 𝐴 ‘ 𝑘 )  ∈  ℕ  ∨  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ∈  ℕ  ∨  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 26 |  | orel1 | ⊢ ( ¬  ( 𝐴 ‘ 𝑘 )  ∈  ℕ  →  ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℕ  ∨  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 27 | 22 25 26 | sylc | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  ( 0  ·  𝑘 ) ) | 
						
							| 29 | 13 | nncnd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 30 | 29 | mul02d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( 0  ·  𝑘 )  =  0 ) | 
						
							| 31 | 28 30 | eqtrd | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  𝑘  ∈  ( ℕ  ∖  ( ◡ 𝐴  “  ℕ ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  0 ) | 
						
							| 32 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 33 | 32 | eqimssi | ⊢ ℕ  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  ℕ  ⊆  ( ℤ≥ ‘ 1 ) ) | 
						
							| 35 | 5 11 31 34 | sumss | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 36 | 35 | eqcomd | ⊢ ( 𝐴 : ℕ ⟶ ℕ0  →  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin )  →  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 ) ) | 
						
							| 38 | 37 | eqeq1d | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin )  →  ( Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁  ↔  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 39 | 38 | pm5.32i | ⊢ ( ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin )  ∧  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 )  ↔  ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin )  ∧  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 40 |  | df-3an | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 )  ↔  ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin )  ∧  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 41 |  | df-3an | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 )  ↔  ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin )  ∧  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 42 | 39 40 41 | 3bitr4i | ⊢ ( ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ℕ ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 )  ↔  ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 43 | 2 42 | bitri | ⊢ ( 𝐴  ∈  𝑃  ↔  ( 𝐴 : ℕ ⟶ ℕ0  ∧  ( ◡ 𝐴  “  ℕ )  ∈  Fin  ∧  Σ 𝑘  ∈  ( ◡ 𝐴  “  ℕ ) ( ( 𝐴 ‘ 𝑘 )  ·  𝑘 )  =  𝑁 ) ) |