| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpathpr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | releupth | ⊢ Rel  ( EulerPaths ‘ 𝐺 ) | 
						
							| 3 |  | reldm0 | ⊢ ( Rel  ( EulerPaths ‘ 𝐺 )  →  ( ( EulerPaths ‘ 𝐺 )  =  ∅  ↔  dom  ( EulerPaths ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( ( EulerPaths ‘ 𝐺 )  =  ∅  ↔  dom  ( EulerPaths ‘ 𝐺 )  =  ∅ ) | 
						
							| 5 | 4 | necon3bii | ⊢ ( ( EulerPaths ‘ 𝐺 )  ≠  ∅  ↔  dom  ( EulerPaths ‘ 𝐺 )  ≠  ∅ ) | 
						
							| 6 |  | n0 | ⊢ ( dom  ( EulerPaths ‘ 𝐺 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  dom  ( EulerPaths ‘ 𝐺 ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( ( EulerPaths ‘ 𝐺 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  dom  ( EulerPaths ‘ 𝐺 ) ) | 
						
							| 8 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 9 | 8 | eldm | ⊢ ( 𝑓  ∈  dom  ( EulerPaths ‘ 𝐺 )  ↔  ∃ 𝑝 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝 ) | 
						
							| 10 | 1 | eulerpathpr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝 )  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) | 
						
							| 11 | 10 | expcom | ⊢ ( 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝  →  ( 𝐺  ∈  UPGraph  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) ) | 
						
							| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑝 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝  →  ( 𝐺  ∈  UPGraph  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) ) | 
						
							| 13 | 9 12 | sylbi | ⊢ ( 𝑓  ∈  dom  ( EulerPaths ‘ 𝐺 )  →  ( 𝐺  ∈  UPGraph  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) ) | 
						
							| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑓 𝑓  ∈  dom  ( EulerPaths ‘ 𝐺 )  →  ( 𝐺  ∈  UPGraph  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) ) | 
						
							| 15 | 7 14 | sylbi | ⊢ ( ( EulerPaths ‘ 𝐺 )  ≠  ∅  →  ( 𝐺  ∈  UPGraph  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) ) | 
						
							| 16 | 15 | impcom | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( EulerPaths ‘ 𝐺 )  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) |