| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerth.1 | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑁 )  =  1 ) ) | 
						
							| 2 |  | eulerth.2 | ⊢ 𝑆  =  { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 } | 
						
							| 3 |  | eulerth.3 | ⊢ 𝑇  =  ( 1 ... ( ϕ ‘ 𝑁 ) ) | 
						
							| 4 |  | eulerth.4 | ⊢ ( 𝜑  →  𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | 
						
							| 5 |  | eulerth.5 | ⊢ 𝐺  =  ( 𝑥  ∈  𝑇  ↦  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  mod  𝑁 ) ) | 
						
							| 6 | 1 | simp1d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 | 6 | phicld | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 8 | 7 | nnred | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 9 | 8 | leidd | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) ) | 
						
							| 10 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ϕ ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  ≤  ( ϕ ‘ 𝑁 )  ↔  1  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  ↔  ( 𝜑  ∧  1  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 1 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝑥  =  1  →  ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑥  =  1  →  ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐺 ) ‘ 1 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑥  =  1  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 ) ) | 
						
							| 19 | 16 18 | eqeq12d | ⊢ ( 𝑥  =  1  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ↔  ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 ) ) ) | 
						
							| 20 | 14 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1  ↔  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  1 ) ) | 
						
							| 22 | 19 21 | anbi12d | ⊢ ( 𝑥  =  1  →  ( ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 )  ↔  ( ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  1 ) ) ) | 
						
							| 23 | 12 22 | imbi12d | ⊢ ( 𝑥  =  1  →  ( ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 ) )  ↔  ( ( 𝜑  ∧  1  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  1 ) ) ) ) | 
						
							| 24 |  | breq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ≤  ( ϕ ‘ 𝑁 )  ↔  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 25 | 24 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  ↔  ( 𝜑  ∧  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝑧 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) ) | 
						
							| 28 | 26 27 | oveq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 ) ) | 
						
							| 32 | 29 31 | eqeq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ↔  ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 ) ) ) | 
						
							| 33 | 27 | oveq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) ) ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1  ↔  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) ) | 
						
							| 35 | 32 34 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 )  ↔  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) ) ) | 
						
							| 36 | 25 35 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 ) )  ↔  ( ( 𝜑  ∧  𝑧  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) ) ) ) | 
						
							| 37 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( 𝑥  ≤  ( ϕ ‘ 𝑁 )  ↔  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 38 | 37 | anbi2d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  ↔  ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ ( 𝑧  +  1 ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) ) | 
						
							| 41 | 39 40 | oveq12d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 ) ) | 
						
							| 45 | 42 44 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ↔  ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 ) ) ) | 
						
							| 46 | 40 | oveq2d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1  ↔  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) | 
						
							| 48 | 45 47 | anbi12d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 )  ↔  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) | 
						
							| 49 | 38 48 | imbi12d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 ) )  ↔  ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) ) | 
						
							| 50 |  | breq1 | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( 𝑥  ≤  ( ϕ ‘ 𝑁 )  ↔  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 51 | 50 | anbi2d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  ↔  ( 𝜑  ∧  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 54 | 52 53 | oveq12d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  =  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 ) ) | 
						
							| 58 | 55 57 | eqeq12d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ↔  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 ) ) ) | 
						
							| 59 | 53 | oveq2d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 60 | 59 | eqeq1d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1  ↔  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) ) | 
						
							| 61 | 58 60 | anbi12d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 )  ↔  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) ) ) | 
						
							| 62 | 51 61 | imbi12d | ⊢ ( 𝑥  =  ( ϕ ‘ 𝑁 )  →  ( ( ( 𝜑  ∧  𝑥  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑥 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑥 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑥 ) )  =  1 ) )  ↔  ( ( 𝜑  ∧  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) ) ) ) | 
						
							| 63 | 1 | simp2d | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 64 |  | f1of | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆  →  𝐹 : 𝑇 ⟶ 𝑆 ) | 
						
							| 65 | 4 64 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ 𝑆 ) | 
						
							| 66 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 67 | 7 66 | eleqtrdi | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 68 |  | eluzfz1 | ⊢ ( ( ϕ ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 70 | 69 3 | eleqtrrdi | ⊢ ( 𝜑  →  1  ∈  𝑇 ) | 
						
							| 71 | 65 70 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  ∈  𝑆 ) | 
						
							| 72 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 1 )  →  ( 𝑦  gcd  𝑁 )  =  ( ( 𝐹 ‘ 1 )  gcd  𝑁 ) ) | 
						
							| 73 | 72 | eqeq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 1 )  →  ( ( 𝑦  gcd  𝑁 )  =  1  ↔  ( ( 𝐹 ‘ 1 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 74 | 73 2 | elrab2 | ⊢ ( ( 𝐹 ‘ 1 )  ∈  𝑆  ↔  ( ( 𝐹 ‘ 1 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝐹 ‘ 1 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 75 | 71 74 | sylib | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 1 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝐹 ‘ 1 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 76 | 75 | simpld | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 77 |  | elfzoelz | ⊢ ( ( 𝐹 ‘ 1 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ 1 )  ∈  ℤ ) | 
						
							| 78 | 76 77 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  ∈  ℤ ) | 
						
							| 79 | 63 78 | zmulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  ∈  ℤ ) | 
						
							| 80 | 79 | zred | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 81 | 6 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 82 |  | modabs2 | ⊢ ( ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 83 | 80 81 82 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 84 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐴  ·  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 88 |  | ovex | ⊢ ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 )  ∈  V | 
						
							| 89 | 87 5 88 | fvmpt | ⊢ ( 1  ∈  𝑇  →  ( 𝐺 ‘ 1 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 90 | 70 89 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 91 | 84 90 | seq1i | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 )  =  ( ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 )  mod  𝑁 ) ) | 
						
							| 93 | 63 | zcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 94 | 93 | exp1d | ⊢ ( 𝜑  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 95 |  | seq1 | ⊢ ( 1  ∈  ℤ  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 96 | 84 95 | ax-mp | ⊢ ( seq 1 (  ·  ,  𝐹 ) ‘ 1 )  =  ( 𝐹 ‘ 1 ) | 
						
							| 97 | 96 | a1i | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 98 | 94 97 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  ( 𝐴  ·  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 99 | 98 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 1 ) )  mod  𝑁 ) ) | 
						
							| 100 | 83 92 99 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 ) ) | 
						
							| 101 | 96 | oveq2i | ⊢ ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  ( 𝑁  gcd  ( 𝐹 ‘ 1 ) ) | 
						
							| 102 | 6 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 103 | 102 78 | gcdcomd | ⊢ ( 𝜑  →  ( 𝑁  gcd  ( 𝐹 ‘ 1 ) )  =  ( ( 𝐹 ‘ 1 )  gcd  𝑁 ) ) | 
						
							| 104 | 75 | simprd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 1 )  gcd  𝑁 )  =  1 ) | 
						
							| 105 | 103 104 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁  gcd  ( 𝐹 ‘ 1 ) )  =  1 ) | 
						
							| 106 | 101 105 | eqtrid | ⊢ ( 𝜑  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  1 ) | 
						
							| 107 | 100 106 | jca | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  1 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  1  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 1 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 1 ) )  =  1 ) ) | 
						
							| 109 |  | nnre | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℝ ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝜑 )  →  𝑧  ∈  ℝ ) | 
						
							| 111 | 110 | lep1d | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝜑 )  →  𝑧  ≤  ( 𝑧  +  1 ) ) | 
						
							| 112 |  | peano2re | ⊢ ( 𝑧  ∈  ℝ  →  ( 𝑧  +  1 )  ∈  ℝ ) | 
						
							| 113 | 110 112 | syl | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝜑 )  →  ( 𝑧  +  1 )  ∈  ℝ ) | 
						
							| 114 | 8 | adantl | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝜑 )  →  ( ϕ ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 115 |  | letr | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( 𝑧  +  1 )  ∈  ℝ  ∧  ( ϕ ‘ 𝑁 )  ∈  ℝ )  →  ( ( 𝑧  ≤  ( 𝑧  +  1 )  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 116 | 110 113 114 115 | syl3anc | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝜑 )  →  ( ( 𝑧  ≤  ( 𝑧  +  1 )  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 117 | 111 116 | mpand | ⊢ ( ( 𝑧  ∈  ℕ  ∧  𝜑 )  →  ( ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 )  →  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 118 | 117 | imdistanda | ⊢ ( 𝑧  ∈  ℕ  →  ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( 𝜑  ∧  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 119 | 118 | imim1d | ⊢ ( 𝑧  ∈  ℕ  →  ( ( ( 𝜑  ∧  𝑧  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) )  →  ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) ) ) ) | 
						
							| 120 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝐴  ∈  ℤ ) | 
						
							| 121 |  | nnnn0 | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℕ0 ) | 
						
							| 122 | 121 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ∈  ℕ0 ) | 
						
							| 123 |  | zexpcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑧  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑧 )  ∈  ℤ ) | 
						
							| 124 | 120 122 123 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐴 ↑ 𝑧 )  ∈  ℤ ) | 
						
							| 125 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ∈  ℕ ) | 
						
							| 126 | 125 66 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 127 | 109 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 128 | 127 112 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑧  +  1 )  ∈  ℝ ) | 
						
							| 129 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ϕ ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 130 | 127 | lep1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ≤  ( 𝑧  +  1 ) ) | 
						
							| 131 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) | 
						
							| 132 | 127 128 129 130 131 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) | 
						
							| 133 |  | nnz | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℤ ) | 
						
							| 134 | 133 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 135 | 7 | nnzd | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ϕ ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 137 |  | eluz | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( ϕ ‘ 𝑁 )  ∈  ℤ )  →  ( ( ϕ ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 𝑧 )  ↔  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 138 | 134 136 137 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ϕ ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 𝑧 )  ↔  𝑧  ≤  ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 139 | 132 138 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ϕ ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 𝑧 ) ) | 
						
							| 140 |  | fzss2 | ⊢ ( ( ϕ ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 𝑧 )  →  ( 1 ... 𝑧 )  ⊆  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 141 | 139 140 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 1 ... 𝑧 )  ⊆  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 142 | 141 3 | sseqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 1 ... 𝑧 )  ⊆  𝑇 ) | 
						
							| 143 | 142 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  ∧  𝑥  ∈  ( 1 ... 𝑧 ) )  →  𝑥  ∈  𝑇 ) | 
						
							| 144 | 65 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 145 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑦  gcd  𝑁 )  =  ( ( 𝐹 ‘ 𝑥 )  gcd  𝑁 ) ) | 
						
							| 146 | 145 | eqeq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝑦  gcd  𝑁 )  =  1  ↔  ( ( 𝐹 ‘ 𝑥 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 147 | 146 2 | elrab2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝑆  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝐹 ‘ 𝑥 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 148 | 144 147 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝐹 ‘ 𝑥 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 149 | 148 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 150 |  | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 151 | 149 150 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 152 | 151 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  ∧  𝑥  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 153 | 143 152 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  ∧  𝑥  ∈  ( 1 ... 𝑧 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 154 |  | zmulcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 155 | 154 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 156 | 126 153 155 | seqcl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 157 | 124 156 | zmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ∈  ℤ ) | 
						
							| 158 | 157 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 159 | 2 | ssrab3 | ⊢ 𝑆  ⊆  ( 0 ..^ 𝑁 ) | 
						
							| 160 | 1 2 3 4 5 | eulerthlem1 | ⊢ ( 𝜑  →  𝐺 : 𝑇 ⟶ 𝑆 ) | 
						
							| 161 | 160 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 162 | 159 161 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 163 |  | elfzoelz | ⊢ ( ( 𝐺 ‘ 𝑥 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 164 | 162 163 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 165 | 164 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  ∧  𝑥  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 166 | 143 165 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  ∧  𝑥  ∈  ( 1 ... 𝑧 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 167 | 126 166 155 | seqcl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 168 | 167 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 169 | 65 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝐹 : 𝑇 ⟶ 𝑆 ) | 
						
							| 170 |  | peano2nn | ⊢ ( 𝑧  ∈  ℕ  →  ( 𝑧  +  1 )  ∈  ℕ ) | 
						
							| 171 | 170 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑧  +  1 )  ∈  ℕ ) | 
						
							| 172 | 171 | nnge1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  1  ≤  ( 𝑧  +  1 ) ) | 
						
							| 173 | 171 | nnzd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑧  +  1 )  ∈  ℤ ) | 
						
							| 174 |  | elfz | ⊢ ( ( ( 𝑧  +  1 )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  ( ϕ ‘ 𝑁 )  ∈  ℤ )  →  ( ( 𝑧  +  1 )  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) )  ↔  ( 1  ≤  ( 𝑧  +  1 )  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 175 | 84 174 | mp3an2 | ⊢ ( ( ( 𝑧  +  1 )  ∈  ℤ  ∧  ( ϕ ‘ 𝑁 )  ∈  ℤ )  →  ( ( 𝑧  +  1 )  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) )  ↔  ( 1  ≤  ( 𝑧  +  1 )  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 176 | 173 136 175 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝑧  +  1 )  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) )  ↔  ( 1  ≤  ( 𝑧  +  1 )  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 177 | 172 131 176 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑧  +  1 )  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 178 | 177 3 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑧  +  1 )  ∈  𝑇 ) | 
						
							| 179 | 169 178 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  𝑆 ) | 
						
							| 180 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  gcd  𝑁 )  =  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  gcd  𝑁 ) ) | 
						
							| 181 | 180 | eqeq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( ( 𝑦  gcd  𝑁 )  =  1  ↔  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  gcd  𝑁 )  =  1 ) ) | 
						
							| 182 | 181 2 | elrab2 | ⊢ ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  𝑆  ↔  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  gcd  𝑁 )  =  1 ) ) | 
						
							| 183 | 179 182 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  gcd  𝑁 )  =  1 ) ) | 
						
							| 184 | 183 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 185 |  | elfzoelz | ⊢ ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ℤ ) | 
						
							| 186 | 184 185 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ℤ ) | 
						
							| 187 | 120 186 | zmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℤ ) | 
						
							| 188 | 81 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑁  ∈  ℝ+ ) | 
						
							| 189 |  | modmul1 | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ∈  ℝ  ∧  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ∈  ℝ )  ∧  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℤ  ∧  𝑁  ∈  ℝ+ )  ∧  ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 ) ) | 
						
							| 190 | 189 | 3expia | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ∈  ℝ  ∧  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ∈  ℝ )  ∧  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℤ  ∧  𝑁  ∈  ℝ+ ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 ) ) ) | 
						
							| 191 | 158 168 187 188 190 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 ) ) ) | 
						
							| 192 | 124 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐴 ↑ 𝑧 )  ∈  ℂ ) | 
						
							| 193 | 156 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 194 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 195 | 186 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ℂ ) | 
						
							| 196 | 192 193 194 195 | mul4d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  ( ( ( 𝐴 ↑ 𝑧 )  ·  𝐴 )  ·  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 197 | 194 122 | expp1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐴 ↑ ( 𝑧  +  1 ) )  =  ( ( 𝐴 ↑ 𝑧 )  ·  𝐴 ) ) | 
						
							| 198 |  | seqp1 | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) )  =  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 199 | 126 198 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) )  =  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 200 | 197 199 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  ( ( ( 𝐴 ↑ 𝑧 )  ·  𝐴 )  ·  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 201 | 196 200 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 202 | 201 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 203 | 187 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℝ ) | 
						
							| 204 | 203 188 | modcld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ∈  ℝ ) | 
						
							| 205 |  | modabs2 | ⊢ ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 206 | 203 188 205 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 207 |  | modmul1 | ⊢ ( ( ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ∈  ℝ  ∧  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℝ )  ∧  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ∈  ℤ  ∧  𝑁  ∈  ℝ+ )  ∧  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) )  →  ( ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 208 | 204 203 167 188 206 207 | syl221anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 209 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) | 
						
							| 210 | 209 | oveq2d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 211 | 210 | oveq1d | ⊢ ( 𝑥  =  ( 𝑧  +  1 )  →  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 212 |  | ovex | ⊢ ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ∈  V | 
						
							| 213 | 211 5 212 | fvmpt | ⊢ ( ( 𝑧  +  1 )  ∈  𝑇  →  ( 𝐺 ‘ ( 𝑧  +  1 ) )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 214 | 178 213 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐺 ‘ ( 𝑧  +  1 ) )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) | 
						
							| 215 | 214 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐺 ‘ ( 𝑧  +  1 ) ) )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) ) | 
						
							| 216 |  | seqp1 | ⊢ ( 𝑧  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐺 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 217 | 126 216 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐺 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 218 | 204 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ∈  ℂ ) | 
						
							| 219 | 167 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 220 | 218 219 | mulcomd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 ) ) ) | 
						
							| 221 | 215 217 220 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  =  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 222 | 221 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  =  ( ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 223 | 187 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ∈  ℂ ) | 
						
							| 224 | 219 223 | mulcomd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 225 | 224 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  ·  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 226 | 208 222 225 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 ) ) | 
						
							| 227 | 202 226 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  =  ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  ·  ( 𝐴  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  mod  𝑁 )  ↔  ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 ) ) ) | 
						
							| 228 | 191 227 | sylibd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  →  ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 ) ) ) | 
						
							| 229 | 102 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 230 | 229 186 | gcdcomd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑁  gcd  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  =  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  gcd  𝑁 ) ) | 
						
							| 231 | 183 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝐹 ‘ ( 𝑧  +  1 ) )  gcd  𝑁 )  =  1 ) | 
						
							| 232 | 230 231 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑁  gcd  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  =  1 ) | 
						
							| 233 |  | rpmul | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ∈  ℤ  ∧  ( 𝐹 ‘ ( 𝑧  +  1 ) )  ∈  ℤ )  →  ( ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1  ∧  ( 𝑁  gcd  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  =  1 )  →  ( 𝑁  gcd  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  1 ) ) | 
						
							| 234 | 229 156 186 233 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1  ∧  ( 𝑁  gcd  ( 𝐹 ‘ ( 𝑧  +  1 ) ) )  =  1 )  →  ( 𝑁  gcd  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  1 ) ) | 
						
							| 235 | 232 234 | mpan2d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1  →  ( 𝑁  gcd  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  1 ) ) | 
						
							| 236 | 199 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  ( 𝑁  gcd  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 237 | 236 | eqeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1  ↔  ( 𝑁  gcd  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 )  ·  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) )  =  1 ) ) | 
						
							| 238 | 235 237 | sylibrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) | 
						
							| 239 | 228 238 | anim12d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 )  →  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) | 
						
							| 240 | 239 | an12s | ⊢ ( ( 𝑧  ∈  ℕ  ∧  ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) ) )  →  ( ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 )  →  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) | 
						
							| 241 | 240 | ex | ⊢ ( 𝑧  ∈  ℕ  →  ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 )  →  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) ) | 
						
							| 242 | 241 | a2d | ⊢ ( 𝑧  ∈  ℕ  →  ( ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) )  →  ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) ) | 
						
							| 243 | 119 242 | syld | ⊢ ( 𝑧  ∈  ℕ  →  ( ( ( 𝜑  ∧  𝑧  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ 𝑧 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑧 )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑧 ) )  =  1 ) )  →  ( ( 𝜑  ∧  ( 𝑧  +  1 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ ( 𝑧  +  1 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( 𝑧  +  1 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( 𝑧  +  1 ) ) )  =  1 ) ) ) ) | 
						
							| 244 | 23 36 49 62 108 243 | nnind | ⊢ ( ( ϕ ‘ 𝑁 )  ∈  ℕ  →  ( ( 𝜑  ∧  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) ) ) | 
						
							| 245 | 10 244 | mpcom | ⊢ ( ( 𝜑  ∧  ( ϕ ‘ 𝑁 )  ≤  ( ϕ ‘ 𝑁 ) )  →  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) ) | 
						
							| 246 | 9 245 | mpdan | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) ) | 
						
							| 247 | 246 | simpld | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 ) ) | 
						
							| 248 | 7 | nnnn0d | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 249 |  | zexpcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( ϕ ‘ 𝑁 )  ∈  ℕ0 )  →  ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℤ ) | 
						
							| 250 | 63 248 249 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℤ ) | 
						
							| 251 | 3 | eleq2i | ⊢ ( 𝑥  ∈  𝑇  ↔  𝑥  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 252 | 251 151 | sylan2br | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 253 | 154 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 254 | 67 252 253 | seqcl | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℤ ) | 
						
							| 255 | 250 254 | zmulcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  ∈  ℤ ) | 
						
							| 256 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 257 | 256 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 258 |  | mulcom | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 259 | 258 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 260 |  | mulass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 261 | 260 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 262 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 263 |  | f1ocnv | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆  →  ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) | 
						
							| 264 | 4 263 | syl | ⊢ ( 𝜑  →  ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) | 
						
							| 265 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 266 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  𝐴  ∈  ℤ ) | 
						
							| 267 | 65 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑆 ) | 
						
							| 268 | 267 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑆 ) | 
						
							| 269 | 159 268 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 270 |  | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 271 | 269 270 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 272 | 266 271 | zmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  ∈  ℤ ) | 
						
							| 273 | 65 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 274 | 273 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 275 | 159 274 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 276 |  | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 277 | 275 276 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 278 | 266 277 | zmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  ∈  ℤ ) | 
						
							| 279 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  ∈  ℤ  ∧  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  ∈  ℤ )  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  −  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 280 | 265 272 278 279 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  −  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 281 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 282 | 281 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 283 | 282 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 ) ) | 
						
							| 284 |  | ovex | ⊢ ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 )  ∈  V | 
						
							| 285 | 283 5 284 | fvmpt | ⊢ ( 𝑦  ∈  𝑇  →  ( 𝐺 ‘ 𝑦 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 ) ) | 
						
							| 286 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 287 | 286 | oveq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 288 | 287 | oveq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 289 |  | ovex | ⊢ ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 )  ∈  V | 
						
							| 290 | 288 5 289 | fvmpt | ⊢ ( 𝑧  ∈  𝑇  →  ( 𝐺 ‘ 𝑧 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 ) ) | 
						
							| 291 | 285 290 | eqeqan12d | ⊢ ( ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 ) ) ) | 
						
							| 292 | 291 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  mod  𝑁 )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) )  mod  𝑁 ) ) ) | 
						
							| 293 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 294 | 271 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 295 | 277 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 296 | 293 294 295 | subdid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  =  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  −  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 297 | 296 | breq2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝑁  ∥  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  ↔  𝑁  ∥  ( ( 𝐴  ·  ( 𝐹 ‘ 𝑦 ) )  −  ( 𝐴  ·  ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 298 | 280 292 297 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  𝑁  ∥  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 299 | 102 63 | gcdcomd | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝐴 )  =  ( 𝐴  gcd  𝑁 ) ) | 
						
							| 300 | 1 | simp3d | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝑁 )  =  1 ) | 
						
							| 301 | 299 300 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝐴 )  =  1 ) | 
						
							| 302 | 301 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝑁  gcd  𝐴 )  =  1 ) | 
						
							| 303 | 102 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 304 | 271 277 | zsubcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℤ ) | 
						
							| 305 |  | coprmdvds | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℤ )  →  ( ( 𝑁  ∥  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∧  ( 𝑁  gcd  𝐴 )  =  1 )  →  𝑁  ∥  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 306 | 303 266 304 305 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝑁  ∥  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∧  ( 𝑁  gcd  𝐴 )  =  1 )  →  𝑁  ∥  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 307 | 271 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 308 | 81 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  𝑁  ∈  ℝ+ ) | 
						
							| 309 |  | elfzole1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 ..^ 𝑁 )  →  0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 310 | 269 309 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 311 |  | elfzolt2 | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ 𝑦 )  <  𝑁 ) | 
						
							| 312 | 269 311 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑦 )  <  𝑁 ) | 
						
							| 313 |  | modid | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  <  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑦 )  mod  𝑁 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 314 | 307 308 310 312 313 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐹 ‘ 𝑦 )  mod  𝑁 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 315 | 277 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 316 |  | elfzole1 | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ( 0 ..^ 𝑁 )  →  0  ≤  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 317 | 275 316 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  0  ≤  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 318 |  | elfzolt2 | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐹 ‘ 𝑧 )  <  𝑁 ) | 
						
							| 319 | 275 318 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝐹 ‘ 𝑧 )  <  𝑁 ) | 
						
							| 320 |  | modid | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 )  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝑧 )  ∧  ( 𝐹 ‘ 𝑧 )  <  𝑁 ) )  →  ( ( 𝐹 ‘ 𝑧 )  mod  𝑁 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 321 | 315 308 317 319 320 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐹 ‘ 𝑧 )  mod  𝑁 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 322 | 314 321 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  mod  𝑁 )  =  ( ( 𝐹 ‘ 𝑧 )  mod  𝑁 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 323 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℤ )  →  ( ( ( 𝐹 ‘ 𝑦 )  mod  𝑁 )  =  ( ( 𝐹 ‘ 𝑧 )  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 324 | 265 271 277 323 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  mod  𝑁 )  =  ( ( 𝐹 ‘ 𝑧 )  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 325 |  | f1of1 | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆  →  𝐹 : 𝑇 –1-1→ 𝑆 ) | 
						
							| 326 | 4 325 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑇 –1-1→ 𝑆 ) | 
						
							| 327 |  | f1fveq | ⊢ ( ( 𝐹 : 𝑇 –1-1→ 𝑆  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 328 | 326 327 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 329 | 322 324 328 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝑁  ∥  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 330 | 306 329 | sylibd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝑁  ∥  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∧  ( 𝑁  gcd  𝐴 )  =  1 )  →  𝑦  =  𝑧 ) ) | 
						
							| 331 | 302 330 | mpan2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝑁  ∥  ( 𝐴  ·  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 332 | 298 331 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑇  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 333 | 332 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑇 ∀ 𝑧  ∈  𝑇 ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 334 |  | dff13 | ⊢ ( 𝐺 : 𝑇 –1-1→ 𝑆  ↔  ( 𝐺 : 𝑇 ⟶ 𝑆  ∧  ∀ 𝑦  ∈  𝑇 ∀ 𝑧  ∈  𝑇 ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 335 | 160 333 334 | sylanbrc | ⊢ ( 𝜑  →  𝐺 : 𝑇 –1-1→ 𝑆 ) | 
						
							| 336 | 3 | ovexi | ⊢ 𝑇  ∈  V | 
						
							| 337 | 336 | f1oen | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆  →  𝑇  ≈  𝑆 ) | 
						
							| 338 | 4 337 | syl | ⊢ ( 𝜑  →  𝑇  ≈  𝑆 ) | 
						
							| 339 |  | fzofi | ⊢ ( 0 ..^ 𝑁 )  ∈  Fin | 
						
							| 340 |  | ssfi | ⊢ ( ( ( 0 ..^ 𝑁 )  ∈  Fin  ∧  𝑆  ⊆  ( 0 ..^ 𝑁 ) )  →  𝑆  ∈  Fin ) | 
						
							| 341 | 339 159 340 | mp2an | ⊢ 𝑆  ∈  Fin | 
						
							| 342 |  | f1finf1o | ⊢ ( ( 𝑇  ≈  𝑆  ∧  𝑆  ∈  Fin )  →  ( 𝐺 : 𝑇 –1-1→ 𝑆  ↔  𝐺 : 𝑇 –1-1-onto→ 𝑆 ) ) | 
						
							| 343 | 338 341 342 | sylancl | ⊢ ( 𝜑  →  ( 𝐺 : 𝑇 –1-1→ 𝑆  ↔  𝐺 : 𝑇 –1-1-onto→ 𝑆 ) ) | 
						
							| 344 | 335 343 | mpbid | ⊢ ( 𝜑  →  𝐺 : 𝑇 –1-1-onto→ 𝑆 ) | 
						
							| 345 |  | f1oco | ⊢ ( ( ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇  ∧  𝐺 : 𝑇 –1-1-onto→ 𝑆 )  →  ( ◡ 𝐹  ∘  𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ) | 
						
							| 346 | 264 344 345 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐹  ∘  𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ) | 
						
							| 347 |  | f1oeq23 | ⊢ ( ( 𝑇  =  ( 1 ... ( ϕ ‘ 𝑁 ) )  ∧  𝑇  =  ( 1 ... ( ϕ ‘ 𝑁 ) ) )  →  ( ( ◡ 𝐹  ∘  𝐺 ) : 𝑇 –1-1-onto→ 𝑇  ↔  ( ◡ 𝐹  ∘  𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 348 | 3 3 347 | mp2an | ⊢ ( ( ◡ 𝐹  ∘  𝐺 ) : 𝑇 –1-1-onto→ 𝑇  ↔  ( ◡ 𝐹  ∘  𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 349 | 346 348 | sylib | ⊢ ( 𝜑  →  ( ◡ 𝐹  ∘  𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 350 | 252 | zcnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 351 | 3 | eleq2i | ⊢ ( 𝑤  ∈  𝑇  ↔  𝑤  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 352 |  | fvco3 | ⊢ ( ( 𝐺 : 𝑇 ⟶ 𝑆  ∧  𝑤  ∈  𝑇 )  →  ( ( ◡ 𝐹  ∘  𝐺 ) ‘ 𝑤 )  =  ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 353 | 160 352 | sylan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑇 )  →  ( ( ◡ 𝐹  ∘  𝐺 ) ‘ 𝑤 )  =  ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 354 | 353 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑇 )  →  ( 𝐹 ‘ ( ( ◡ 𝐹  ∘  𝐺 ) ‘ 𝑤 ) )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 355 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑇 )  →  𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | 
						
							| 356 | 160 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 357 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑇 –1-1-onto→ 𝑆  ∧  ( 𝐺 ‘ 𝑤 )  ∈  𝑆 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 358 | 355 356 357 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑇 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 359 | 354 358 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( ( ◡ 𝐹  ∘  𝐺 ) ‘ 𝑤 ) ) ) | 
						
							| 360 | 351 359 | sylan2br | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... ( ϕ ‘ 𝑁 ) ) )  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( ( ◡ 𝐹  ∘  𝐺 ) ‘ 𝑤 ) ) ) | 
						
							| 361 | 257 259 261 67 262 349 350 360 | seqf1o | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 362 | 361 254 | eqeltrd | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℤ ) | 
						
							| 363 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  ∈  ℤ  ∧  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℤ )  →  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ↔  𝑁  ∥  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | 
						
							| 364 | 6 255 362 363 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  mod  𝑁 )  =  ( ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  ↔  𝑁  ∥  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | 
						
							| 365 | 247 364 | mpbid | ⊢ ( 𝜑  →  𝑁  ∥  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 366 | 254 | zcnd | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 367 | 366 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) | 
						
							| 368 | 361 367 | eqtr4d | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) )  =  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) | 
						
							| 369 | 368 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | 
						
							| 370 | 250 | zcnd | ⊢ ( 𝜑  →  ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 371 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 372 |  | subdir | ⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℂ )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | 
						
							| 373 | 371 372 | mp3an2 | ⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℂ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℂ )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | 
						
							| 374 | 370 366 373 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | 
						
							| 375 |  | zsubcl | ⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ∈  ℤ ) | 
						
							| 376 | 250 84 375 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ∈  ℤ ) | 
						
							| 377 | 376 | zcnd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ∈  ℂ ) | 
						
							| 378 | 377 366 | mulcomd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ·  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 379 | 369 374 378 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  −  ( seq 1 (  ·  ,  𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  ( ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ·  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 380 | 365 379 | breqtrd | ⊢ ( 𝜑  →  𝑁  ∥  ( ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ·  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 381 | 246 | simprd | ⊢ ( 𝜑  →  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 ) | 
						
							| 382 |  | coprmdvds | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ∈  ℤ  ∧  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 )  ∈  ℤ )  →  ( ( 𝑁  ∥  ( ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ·  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 )  →  𝑁  ∥  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 383 | 102 254 376 382 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁  ∥  ( ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) )  ·  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) )  ∧  ( 𝑁  gcd  ( seq 1 (  ·  ,  𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) )  =  1 )  →  𝑁  ∥  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 384 | 380 381 383 | mp2and | ⊢ ( 𝜑  →  𝑁  ∥  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) | 
						
							| 385 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 386 | 84 385 | mp3an3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  ∈  ℤ )  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 387 | 6 250 386 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  −  1 ) ) ) | 
						
							| 388 | 384 387 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 ) ) |