Metamath Proof Explorer


Theorem euop2

Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004)

Ref Expression
Hypothesis euop2.1 𝐴 ∈ V
Assertion euop2 ( ∃! 𝑥𝑦 ( 𝑥 = ⟨ 𝐴 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 euop2.1 𝐴 ∈ V
2 opex 𝐴 , 𝑦 ⟩ ∈ V
3 1 moop2 ∃* 𝑦 𝑥 = ⟨ 𝐴 , 𝑦
4 2 3 euxfr2w ( ∃! 𝑥𝑦 ( 𝑥 = ⟨ 𝐴 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 )