Metamath Proof Explorer


Theorem euor

Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv . (Contributed by NM, 21-Oct-2005)

Ref Expression
Hypothesis euor.nf 𝑥 𝜑
Assertion euor ( ( ¬ 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 euor.nf 𝑥 𝜑
2 1 nfn 𝑥 ¬ 𝜑
3 biorf ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
4 2 3 eubid ( ¬ 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝜑𝜓 ) ) )
5 4 biimpa ( ( ¬ 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑𝜓 ) )