Metamath Proof Explorer


Theorem euor2

Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion euor2 ( ¬ ∃ 𝑥 𝜑 → ( ∃! 𝑥 ( 𝜑𝜓 ) ↔ ∃! 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nfe1 𝑥𝑥 𝜑
2 1 nfn 𝑥 ¬ ∃ 𝑥 𝜑
3 19.8a ( 𝜑 → ∃ 𝑥 𝜑 )
4 biorf ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
5 4 bicomd ( ¬ 𝜑 → ( ( 𝜑𝜓 ) ↔ 𝜓 ) )
6 3 5 nsyl5 ( ¬ ∃ 𝑥 𝜑 → ( ( 𝜑𝜓 ) ↔ 𝜓 ) )
7 2 6 eubid ( ¬ ∃ 𝑥 𝜑 → ( ∃! 𝑥 ( 𝜑𝜓 ) ↔ ∃! 𝑥 𝜓 ) )