Metamath Proof Explorer


Theorem euorv

Description: Introduce a disjunct into a unique existential quantifier. Version of euor requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Assertion euorv ( ( ¬ 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 biorf ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
2 1 eubidv ( ¬ 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝜑𝜓 ) ) )
3 2 biimpa ( ( ¬ 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑𝜓 ) )