Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994) (Proof shortened by Wolf Lammen, 27-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eupickb | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupick | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) | |
2 | 1 | 3adant2 | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
3 | exancom | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ) | |
4 | eupick | ⊢ ( ( ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ) → ( 𝜓 → 𝜑 ) ) | |
5 | 3 4 | sylan2b | ⊢ ( ( ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜓 → 𝜑 ) ) |
6 | 5 | 3adant1 | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜓 → 𝜑 ) ) |
7 | 2 6 | impbid | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 ↔ 𝜓 ) ) |