Metamath Proof Explorer


Theorem eupickb

Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion eupickb ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 eupick ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )
2 1 3adant2 ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )
3 exancom ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜓𝜑 ) )
4 eupick ( ( ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜓𝜑 ) ) → ( 𝜓𝜑 ) )
5 3 4 sylan2b ( ( ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜓𝜑 ) )
6 5 3adant1 ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜓𝜑 ) )
7 2 6 impbid ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )