Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eupickbi | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupicka | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | |
2 | 1 | ex | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
3 | euex | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
4 | exintr | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) | |
5 | 3 4 | syl5com | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
6 | 2 5 | impbid | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |