Metamath Proof Explorer


Theorem eupickbi

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion eupickbi ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 eupicka ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ∀ 𝑥 ( 𝜑𝜓 ) )
2 1 ex ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
3 euex ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 )
4 exintr ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑𝜓 ) ) )
5 3 4 syl5com ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) ) )
6 2 5 impbid ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )