Step |
Hyp |
Ref |
Expression |
1 |
|
eupth0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eupth0.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
eqidd |
⊢ ( 𝐴 ∈ 𝑉 → { 〈 0 , 𝐴 〉 } = { 〈 0 , 𝐴 〉 } ) |
4 |
1
|
is0wlk |
⊢ ( ( { 〈 0 , 𝐴 〉 } = { 〈 0 , 𝐴 〉 } ∧ 𝐴 ∈ 𝑉 ) → ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |
5 |
3 4
|
mpancom |
⊢ ( 𝐴 ∈ 𝑉 → ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |
6 |
|
f1o0 |
⊢ ∅ : ∅ –1-1-onto→ ∅ |
7 |
|
eqidd |
⊢ ( 𝐼 = ∅ → ∅ = ∅ ) |
8 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
9 |
8
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ( 0 ..^ 0 ) |
10 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
11 |
9 10
|
eqtri |
⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
12 |
11
|
a1i |
⊢ ( 𝐼 = ∅ → ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ ) |
13 |
|
dmeq |
⊢ ( 𝐼 = ∅ → dom 𝐼 = dom ∅ ) |
14 |
|
dm0 |
⊢ dom ∅ = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( 𝐼 = ∅ → dom 𝐼 = ∅ ) |
16 |
7 12 15
|
f1oeq123d |
⊢ ( 𝐼 = ∅ → ( ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) |
17 |
6 16
|
mpbiri |
⊢ ( 𝐼 = ∅ → ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ) |
18 |
5 17
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ∧ ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ) ) |
19 |
2
|
iseupthf1o |
⊢ ( ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ↔ ( ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ∧ ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ) ) |
20 |
18 19
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |