| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupth0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eupth0.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝐴  ∈  𝑉  →  { 〈 0 ,  𝐴 〉 }  =  { 〈 0 ,  𝐴 〉 } ) | 
						
							| 4 | 1 | is0wlk | ⊢ ( ( { 〈 0 ,  𝐴 〉 }  =  { 〈 0 ,  𝐴 〉 }  ∧  𝐴  ∈  𝑉 )  →  ∅ ( Walks ‘ 𝐺 ) { 〈 0 ,  𝐴 〉 } ) | 
						
							| 5 | 3 4 | mpancom | ⊢ ( 𝐴  ∈  𝑉  →  ∅ ( Walks ‘ 𝐺 ) { 〈 0 ,  𝐴 〉 } ) | 
						
							| 6 |  | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | 
						
							| 7 |  | eqidd | ⊢ ( 𝐼  =  ∅  →  ∅  =  ∅ ) | 
						
							| 8 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 9 | 8 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) )  =  ( 0 ..^ 0 ) | 
						
							| 10 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 11 | 9 10 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) )  =  ∅ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐼  =  ∅  →  ( 0 ..^ ( ♯ ‘ ∅ ) )  =  ∅ ) | 
						
							| 13 |  | dmeq | ⊢ ( 𝐼  =  ∅  →  dom  𝐼  =  dom  ∅ ) | 
						
							| 14 |  | dm0 | ⊢ dom  ∅  =  ∅ | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝐼  =  ∅  →  dom  𝐼  =  ∅ ) | 
						
							| 16 | 7 12 15 | f1oeq123d | ⊢ ( 𝐼  =  ∅  →  ( ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom  𝐼  ↔  ∅ : ∅ –1-1-onto→ ∅ ) ) | 
						
							| 17 | 6 16 | mpbiri | ⊢ ( 𝐼  =  ∅  →  ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom  𝐼 ) | 
						
							| 18 | 5 17 | anim12i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐼  =  ∅ )  →  ( ∅ ( Walks ‘ 𝐺 ) { 〈 0 ,  𝐴 〉 }  ∧  ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom  𝐼 ) ) | 
						
							| 19 | 2 | iseupthf1o | ⊢ ( ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 ,  𝐴 〉 }  ↔  ( ∅ ( Walks ‘ 𝐺 ) { 〈 0 ,  𝐴 〉 }  ∧  ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom  𝐼 ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐼  =  ∅ )  →  ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 ,  𝐴 〉 } ) |