Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( ∅ = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( 𝑈 ∈ ∅ ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
2 |
1
|
bibi1d |
⊢ ( ∅ = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( ( 𝑈 ∈ ∅ ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ↔ ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) ) |
3 |
|
eleq2 |
⊢ ( { 𝐴 , 𝐵 } = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
4 |
3
|
bibi1d |
⊢ ( { 𝐴 , 𝐵 } = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ↔ ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) ) |
5 |
|
noel |
⊢ ¬ 𝑈 ∈ ∅ |
6 |
5
|
a1i |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ¬ 𝑈 ∈ ∅ ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
8 |
7
|
neneqd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) → ¬ 𝐴 = 𝐵 ) |
9 |
|
simpr |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
10 |
8 9
|
nsyl3 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ¬ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) |
11 |
6 10
|
2falsed |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( 𝑈 ∈ ∅ ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
12 |
|
elprg |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) |
13 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
14 |
|
ibar |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
15 |
13 14
|
sylbir |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
16 |
12 15
|
sylan9bb |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
17 |
2 4 11 16
|
ifbothda |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |