Step |
Hyp |
Ref |
Expression |
1 |
|
eupth2lem2.1 |
⊢ 𝐵 ∈ V |
2 |
|
eqidd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → 𝐵 = 𝐵 ) |
3 |
2
|
olcd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) |
4 |
3
|
biantrud |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
5 |
|
eupth2lem1 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
6 |
1 5
|
ax-mp |
⊢ ( 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) |
7 |
4 6
|
bitr4di |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 ≠ 𝐵 ↔ 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → 𝐵 = 𝑈 ) |
9 |
8
|
eleq1d |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
10 |
7 9
|
bitrd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 ≠ 𝐵 ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
11 |
10
|
necon1bbid |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ¬ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝐴 = 𝐵 ) ) |
12 |
|
simpl |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → 𝐵 ≠ 𝐶 ) |
13 |
|
neeq1 |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶 ) ) |
14 |
12 13
|
syl5ibcom |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 → 𝐴 ≠ 𝐶 ) ) |
15 |
14
|
pm4.71rd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴 ) ) ) |
16 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
17 |
|
ancom |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴 ) ) |
18 |
15 16 17
|
3bitr4g |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 = 𝐵 ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶 ) ) ) |
19 |
12
|
neneqd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ¬ 𝐵 = 𝐶 ) |
20 |
|
biorf |
⊢ ( ¬ 𝐵 = 𝐶 → ( 𝐵 = 𝐴 ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐴 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐴 ) ) ) |
22 |
|
orcom |
⊢ ( ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) |
23 |
21 22
|
bitrdi |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
24 |
23
|
anbi1d |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ( 𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶 ) ↔ ( ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) ) |
25 |
18 24
|
bitrd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 = 𝐵 ↔ ( ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) ) |
26 |
|
ancom |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ↔ ( ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) |
27 |
25 26
|
bitr4di |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) ) |
28 |
|
eupth2lem1 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) ) |
29 |
1 28
|
ax-mp |
⊢ ( 𝐵 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
30 |
8
|
eleq1d |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |
31 |
29 30
|
bitr3id |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |
32 |
11 27 31
|
3bitrd |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ¬ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |