Step |
Hyp |
Ref |
Expression |
1 |
|
eupth2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eupth2.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
eupth2.g |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
4 |
|
eupth2.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
5 |
|
eupth2.p |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
6 |
|
eupth2.h |
⊢ 𝐻 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) 〉 |
7 |
|
eupth2.x |
⊢ 𝑋 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) 〉 |
8 |
|
eupth2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
|
eupth2.l |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) |
10 |
|
eupth2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
11 |
|
eupth2.o |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) |
12 |
|
eupthiswlk |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
13 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
14 |
5 12 13
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
15 |
|
nn0p1elfzo |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
16 |
8 14 9 15
|
syl3anc |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
17 |
|
eupthistrl |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
19 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) 〉 ) |
20 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
21 |
2
|
fvexi |
⊢ 𝐼 ∈ V |
22 |
21
|
resex |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∈ V |
23 |
20 22
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) 〉 ) = 𝑉 |
24 |
19 23
|
eqtri |
⊢ ( Vtx ‘ 𝐻 ) = 𝑉 |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
26 |
|
snex |
⊢ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ∈ V |
27 |
20 26
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝑉 , { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } 〉 ) = 𝑉 |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } 〉 ) = 𝑉 ) |
29 |
7
|
fveq2i |
⊢ ( Vtx ‘ 𝑋 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) 〉 ) |
30 |
21
|
resex |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) ∈ V |
31 |
20 30
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) 〉 ) = 𝑉 |
32 |
29 31
|
eqtri |
⊢ ( Vtx ‘ 𝑋 ) = 𝑉 |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) |
34 |
6
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) 〉 ) |
35 |
20 22
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
36 |
34 35
|
eqtri |
⊢ ( iEdg ‘ 𝐻 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
37 |
36
|
a1i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
38 |
20 26
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 𝑉 , { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } 〉 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } 〉 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
40 |
7
|
fveq2i |
⊢ ( iEdg ‘ 𝑋 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) 〉 ) |
41 |
20 30
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
42 |
40 41
|
eqtri |
⊢ ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
43 |
8
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
44 |
|
fzval3 |
⊢ ( 𝑁 ∈ ℤ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
45 |
44
|
eqcomd |
⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ ( 𝑁 + 1 ) ) = ( 0 ... 𝑁 ) ) |
46 |
43 45
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 + 1 ) ) = ( 0 ... 𝑁 ) ) |
47 |
46
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) = ( 𝐹 “ ( 0 ... 𝑁 ) ) ) |
48 |
47
|
reseq2d |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
49 |
42 48
|
syl5eq |
⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
50 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑁 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) |
52 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
53 |
51 52
|
preq12d |
⊢ ( 𝑘 = 𝑁 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
54 |
50 53
|
eqeq12d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) |
55 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
56 |
2
|
upgrwlkedg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
57 |
3 55 56
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
58 |
54 57 16
|
rspcdva |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
59 |
1 2 4 16 10 18 25 28 33 37 39 49 11 58
|
eupth2lem3lem7 |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |