Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
trlsegvdeg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
trlsegvdeg.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
trlsegvdeg.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
trlsegvdeg.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
6 |
|
trlsegvdeg.w |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
7 |
|
trlsegvdeg.vx |
⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) |
8 |
|
trlsegvdeg.vy |
⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
9 |
|
trlsegvdeg.vz |
⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) |
10 |
|
trlsegvdeg.ix |
⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
11 |
|
trlsegvdeg.iy |
⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
12 |
|
trlsegvdeg.iz |
⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
13 |
|
eupth2lem3.o |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) |
14 |
|
eupth2lem3lem3.e |
⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑈 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) |
16 |
15
|
breq2d |
⊢ ( 𝑥 = 𝑈 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
17 |
16
|
notbid |
⊢ ( 𝑥 = 𝑈 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
18 |
17
|
elrab3 |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
20 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
21 |
19 20
|
bitr3d |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
23 |
|
2z |
⊢ 2 ∈ ℤ |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 2 ∈ ℤ ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℕ0 ) |
26 |
25
|
nn0zd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem2 |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℕ0 ) |
29 |
28
|
nn0zd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℤ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℤ ) |
31 |
|
z2even |
⊢ 2 ∥ 2 |
32 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
33 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) |
34 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → 𝑈 ∈ 𝑉 ) |
35 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
36 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
37 |
|
ifptru |
⊢ ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } ) ) |
39 |
36 38
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } ) |
40 |
|
sneq |
⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) } = { 𝑈 } ) |
41 |
40
|
eqcoms |
⊢ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) → { ( 𝑃 ‘ 𝑁 ) } = { 𝑈 } ) |
42 |
39 41
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { 𝑈 } ) |
43 |
42
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 = 〈 ( 𝐹 ‘ 𝑁 ) , { 𝑈 } 〉 ) |
44 |
43
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } = { 〈 ( 𝐹 ‘ 𝑁 ) , { 𝑈 } 〉 } ) |
45 |
35 44
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , { 𝑈 } 〉 } ) |
46 |
32 33 34 45
|
1loopgrvd2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 2 ) |
47 |
31 46
|
breqtrrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) |
48 |
|
z0even |
⊢ 2 ∥ 0 |
49 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
50 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) |
51 |
1 2 3 4 5 6
|
trlsegvdeglem1 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
52 |
51
|
simpld |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
54 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
55 |
39
|
opeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 = 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 ) |
56 |
55
|
sneqd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } = { 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 } ) |
57 |
54 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 } ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 } ) |
59 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 𝑈 ∈ 𝑉 ) |
60 |
59
|
anim1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( 𝑈 ∈ 𝑉 ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) ) |
61 |
|
eldifsn |
⊢ ( 𝑈 ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 𝑁 ) } ) ↔ ( 𝑈 ∈ 𝑉 ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) ) |
62 |
60 61
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → 𝑈 ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 𝑁 ) } ) ) |
63 |
49 50 53 58 62
|
1loopgrvd0 |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 0 ) |
64 |
48 63
|
breqtrrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) |
65 |
47 64
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) |
66 |
|
dvdsadd2b |
⊢ ( ( 2 ∈ ℤ ∧ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℤ ∧ 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) ) |
67 |
24 27 30 65 66
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) ) |
68 |
28
|
nn0cnd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℂ ) |
69 |
25
|
nn0cnd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℂ ) |
70 |
68 69
|
addcomd |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) |
71 |
70
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
73 |
67 72
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
74 |
73
|
notbid |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
75 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
76 |
75
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
77 |
75
|
preq2d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
78 |
76 77
|
ifbieq2d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) |
79 |
78
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
80 |
22 74 79
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |