Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
trlsegvdeg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
trlsegvdeg.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
trlsegvdeg.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
trlsegvdeg.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
6 |
|
trlsegvdeg.w |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
7 |
|
trlsegvdeg.vx |
⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) |
8 |
|
trlsegvdeg.vy |
⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
9 |
|
trlsegvdeg.vz |
⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) |
10 |
|
trlsegvdeg.ix |
⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
11 |
|
trlsegvdeg.iy |
⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
12 |
|
trlsegvdeg.iz |
⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
13 |
|
eupth2lem3.o |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) |
14 |
|
eupth2lem3.e |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeg |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) |
16 |
15
|
breq2d |
⊢ ( 𝜑 → ( 2 ∥ ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
17 |
16
|
notbid |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
18 |
|
ifpprsnss |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19
|
eupth2lem3lem3 |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
eupth2lem3lem5 |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19 21
|
eupth2lem3lem4 |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
23 |
22
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
24 |
23
|
expcom |
⊢ ( ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
25 |
|
neanior |
⊢ ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ↔ ¬ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
eupth2lem3lem6 |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
27 |
26
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
28 |
27
|
expcom |
⊢ ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
29 |
25 28
|
sylbir |
⊢ ( ¬ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
30 |
24 29
|
pm2.61i |
⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
31 |
20 30
|
pm2.61dane |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
32 |
17 31
|
bitrd |
⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |