Metamath Proof Explorer


Theorem eupthf1o

Description: The F function in an Eulerian path is a bijection from a half-open range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis eupths.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion eupthf1o ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 )

Proof

Step Hyp Ref Expression
1 eupths.i 𝐼 = ( iEdg ‘ 𝐺 )
2 1 eupthi ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) )
3 2 simprd ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 )