Metamath Proof Explorer


Theorem eupthistrl

Description: An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion eupthistrl ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
2 1 iseupth ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom ( iEdg ‘ 𝐺 ) ) )
3 2 simplbi ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 )