| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupthp1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eupthp1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eupthp1.f | ⊢ ( 𝜑  →  Fun  𝐼 ) | 
						
							| 4 |  | eupthp1.a | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 5 |  | eupthp1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 6 |  | eupthp1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 7 |  | eupthp1.d | ⊢ ( 𝜑  →  ¬  𝐵  ∈  dom  𝐼 ) | 
						
							| 8 |  | eupthp1.p | ⊢ ( 𝜑  →  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | 
						
							| 9 |  | eupthp1.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐹 ) | 
						
							| 10 |  | eupthp1.e | ⊢ ( 𝜑  →  𝐸  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 11 |  | eupthp1.x | ⊢ ( 𝜑  →  { ( 𝑃 ‘ 𝑁 ) ,  𝐶 }  ⊆  𝐸 ) | 
						
							| 12 |  | eupthp1.u | ⊢ ( iEdg ‘ 𝑆 )  =  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } ) | 
						
							| 13 |  | eupthp1.h | ⊢ 𝐻  =  ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) | 
						
							| 14 |  | eupthp1.q | ⊢ 𝑄  =  ( 𝑃  ∪  { 〈 ( 𝑁  +  1 ) ,  𝐶 〉 } ) | 
						
							| 15 |  | eupthp1.s | ⊢ ( Vtx ‘ 𝑆 )  =  𝑉 | 
						
							| 16 |  | eupthp1.l | ⊢ ( ( 𝜑  ∧  𝐶  =  ( 𝑃 ‘ 𝑁 ) )  →  𝐸  =  { 𝐶 } ) | 
						
							| 17 |  | eupthiswlk | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 18 | 8 17 | syl | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 19 | 12 | a1i | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } ) ) | 
						
							| 20 | 15 | a1i | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  𝑉 ) | 
						
							| 21 | 1 2 3 4 5 6 7 18 9 10 11 19 13 14 20 16 | wlkp1 | ⊢ ( 𝜑  →  𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) | 
						
							| 22 | 2 | eupthi | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼 ) ) | 
						
							| 23 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 )  =  𝑁 | 
						
							| 24 | 23 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) )  =  ( 0 ..^ 𝑁 ) | 
						
							| 25 |  | f1oeq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  =  ( 0 ..^ 𝑁 )  →  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ↔  𝐹 : ( 0 ..^ 𝑁 ) –1-1-onto→ dom  𝐼 ) ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ↔  𝐹 : ( 0 ..^ 𝑁 ) –1-1-onto→ dom  𝐼 ) | 
						
							| 27 | 26 | biimpi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  →  𝐹 : ( 0 ..^ 𝑁 ) –1-1-onto→ dom  𝐼 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼 )  →  𝐹 : ( 0 ..^ 𝑁 ) –1-1-onto→ dom  𝐼 ) | 
						
							| 29 | 8 22 28 | 3syl | ⊢ ( 𝜑  →  𝐹 : ( 0 ..^ 𝑁 ) –1-1-onto→ dom  𝐼 ) | 
						
							| 30 | 9 | fvexi | ⊢ 𝑁  ∈  V | 
						
							| 31 |  | f1osng | ⊢ ( ( 𝑁  ∈  V  ∧  𝐵  ∈  𝑊 )  →  { 〈 𝑁 ,  𝐵 〉 } : { 𝑁 } –1-1-onto→ { 𝐵 } ) | 
						
							| 32 | 30 5 31 | sylancr | ⊢ ( 𝜑  →  { 〈 𝑁 ,  𝐵 〉 } : { 𝑁 } –1-1-onto→ { 𝐵 } ) | 
						
							| 33 |  | dmsnopg | ⊢ ( 𝐸  ∈  ( Edg ‘ 𝐺 )  →  dom  { 〈 𝐵 ,  𝐸 〉 }  =  { 𝐵 } ) | 
						
							| 34 | 10 33 | syl | ⊢ ( 𝜑  →  dom  { 〈 𝐵 ,  𝐸 〉 }  =  { 𝐵 } ) | 
						
							| 35 | 34 | f1oeq3d | ⊢ ( 𝜑  →  ( { 〈 𝑁 ,  𝐵 〉 } : { 𝑁 } –1-1-onto→ dom  { 〈 𝐵 ,  𝐸 〉 }  ↔  { 〈 𝑁 ,  𝐵 〉 } : { 𝑁 } –1-1-onto→ { 𝐵 } ) ) | 
						
							| 36 | 32 35 | mpbird | ⊢ ( 𝜑  →  { 〈 𝑁 ,  𝐵 〉 } : { 𝑁 } –1-1-onto→ dom  { 〈 𝐵 ,  𝐸 〉 } ) | 
						
							| 37 |  | fzodisjsn | ⊢ ( ( 0 ..^ 𝑁 )  ∩  { 𝑁 } )  =  ∅ | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  ( ( 0 ..^ 𝑁 )  ∩  { 𝑁 } )  =  ∅ ) | 
						
							| 39 | 34 | ineq2d | ⊢ ( 𝜑  →  ( dom  𝐼  ∩  dom  { 〈 𝐵 ,  𝐸 〉 } )  =  ( dom  𝐼  ∩  { 𝐵 } ) ) | 
						
							| 40 |  | disjsn | ⊢ ( ( dom  𝐼  ∩  { 𝐵 } )  =  ∅  ↔  ¬  𝐵  ∈  dom  𝐼 ) | 
						
							| 41 | 7 40 | sylibr | ⊢ ( 𝜑  →  ( dom  𝐼  ∩  { 𝐵 } )  =  ∅ ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( 𝜑  →  ( dom  𝐼  ∩  dom  { 〈 𝐵 ,  𝐸 〉 } )  =  ∅ ) | 
						
							| 43 |  | f1oun | ⊢ ( ( ( 𝐹 : ( 0 ..^ 𝑁 ) –1-1-onto→ dom  𝐼  ∧  { 〈 𝑁 ,  𝐵 〉 } : { 𝑁 } –1-1-onto→ dom  { 〈 𝐵 ,  𝐸 〉 } )  ∧  ( ( ( 0 ..^ 𝑁 )  ∩  { 𝑁 } )  =  ∅  ∧  ( dom  𝐼  ∩  dom  { 〈 𝐵 ,  𝐸 〉 } )  =  ∅ ) )  →  ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) : ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) –1-1-onto→ ( dom  𝐼  ∪  dom  { 〈 𝐵 ,  𝐸 〉 } ) ) | 
						
							| 44 | 29 36 38 42 43 | syl22anc | ⊢ ( 𝜑  →  ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) : ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) –1-1-onto→ ( dom  𝐼  ∪  dom  { 〈 𝐵 ,  𝐸 〉 } ) ) | 
						
							| 45 | 13 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) ) | 
						
							| 46 | 1 2 3 4 5 6 7 18 9 10 11 19 13 | wlkp1lem2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( 𝑁  +  1 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝐻 ) )  =  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 48 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 49 | 9 | eleq1i | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 50 |  | elnn0uz | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 51 | 49 50 | sylbb1 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 52 | 48 51 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 53 | 8 17 52 | 3syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 54 |  | fzosplitsn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ..^ ( 𝑁  +  1 ) )  =  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝜑  →  ( 0 ..^ ( 𝑁  +  1 ) )  =  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) ) | 
						
							| 56 | 47 55 | eqtrd | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝐻 ) )  =  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) ) | 
						
							| 57 |  | dmun | ⊢ dom  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } )  =  ( dom  𝐼  ∪  dom  { 〈 𝐵 ,  𝐸 〉 } ) | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  dom  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } )  =  ( dom  𝐼  ∪  dom  { 〈 𝐵 ,  𝐸 〉 } ) ) | 
						
							| 59 | 45 56 58 | f1oeq123d | ⊢ ( 𝜑  →  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } )  ↔  ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) : ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) –1-1-onto→ ( dom  𝐼  ∪  dom  { 〈 𝐵 ,  𝐸 〉 } ) ) ) | 
						
							| 60 | 44 59 | mpbird | ⊢ ( 𝜑  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } ) ) | 
						
							| 61 | 12 | eqcomi | ⊢ ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } )  =  ( iEdg ‘ 𝑆 ) | 
						
							| 62 | 61 | iseupthf1o | ⊢ ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄  ↔  ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } ) ) ) | 
						
							| 63 | 21 60 62 | sylanbrc | ⊢ ( 𝜑  →  𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |