| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupth0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eupth0.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eupthres.d | ⊢ ( 𝜑  →  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | eupthres.n | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 5 |  | eupthres.e | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 6 |  | eupthres.h | ⊢ 𝐻  =  ( 𝐹  prefix  𝑁 ) | 
						
							| 7 |  | eupthres.q | ⊢ 𝑄  =  ( 𝑃  ↾  ( 0 ... 𝑁 ) ) | 
						
							| 8 |  | eupthres.s | ⊢ ( Vtx ‘ 𝑆 )  =  𝑉 | 
						
							| 9 |  | eupthistrl | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 10 |  | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 12 | 8 | a1i | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  𝑉 ) | 
						
							| 13 | 1 2 11 4 12 5 6 7 | wlkres | ⊢ ( 𝜑  →  𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) | 
						
							| 14 | 3 9 | syl | ⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 15 | 1 2 14 4 6 | trlreslem | ⊢ ( 𝜑  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( iEdg ‘ 𝑆 )  =  ( iEdg ‘ 𝑆 ) | 
						
							| 17 | 16 | iseupthf1o | ⊢ ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄  ↔  ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( iEdg ‘ 𝑆 ) ) ) | 
						
							| 18 | 5 | dmeqd | ⊢ ( 𝜑  →  dom  ( iEdg ‘ 𝑆 )  =  dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 19 | 18 | f1oeq3d | ⊢ ( 𝜑  →  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( iEdg ‘ 𝑆 )  ↔  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( iEdg ‘ 𝑆 ) )  ↔  ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) ) ) | 
						
							| 21 | 17 20 | bitrid | ⊢ ( 𝜑  →  ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄  ↔  ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) ) ) | 
						
							| 22 | 13 15 21 | mpbir2and | ⊢ ( 𝜑  →  𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |