| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupths.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 3 | 2 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  𝐼 ) | 
						
							| 4 | 3 | dmeqd | ⊢ ( 𝑔  =  𝐺  →  dom  ( iEdg ‘ 𝑔 )  =  dom  𝐼 ) | 
						
							| 5 |  | foeq3 | ⊢ ( dom  ( iEdg ‘ 𝑔 )  =  dom  𝐼  →  ( 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 )  ↔  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 )  ↔  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 7 |  | df-eupth | ⊢ EulerPaths  =  ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  ( iEdg ‘ 𝑔 ) ) } ) | 
						
							| 8 | 6 7 | fvmptopab | ⊢ ( EulerPaths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom  𝐼 ) } |