Step |
Hyp |
Ref |
Expression |
1 |
|
eupths.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
1
|
eupthi |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) ) |
3 |
2
|
simpld |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
4 |
1
|
wlkvtxeledg |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) |
6 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
7 |
5 6
|
preq12d |
⊢ ( 𝑘 = 𝑁 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
8 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑁 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
9 |
7 8
|
sseq12d |
⊢ ( 𝑘 = 𝑁 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
10 |
9
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
11 |
3 4 10
|
3syl |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |