Step |
Hyp |
Ref |
Expression |
1 |
|
eupthvdres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eupthvdres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
eupthvdres.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
4 |
|
eupthvdres.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
5 |
|
eupthvdres.p |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
6 |
|
eupthvdres.h |
⊢ 𝐻 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 |
7 |
|
opex |
⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ∈ V |
8 |
6 7
|
eqeltri |
⊢ 𝐻 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
10 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
11 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
12 |
2
|
fvexi |
⊢ 𝐼 ∈ V |
13 |
12
|
resex |
⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V |
14 |
11 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) ) |
16 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = 𝑉 ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = 𝑉 ) |
18 |
10 17
|
syl5eq |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
19 |
18 1
|
eqtrdi |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) |
20 |
6
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
21 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
22 |
15 21
|
syl |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
23 |
20 22
|
syl5eq |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
24 |
2
|
eupthf1o |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) |
25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) |
26 |
|
f1ofo |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom 𝐼 ) |
27 |
|
foima |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom 𝐼 → ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = dom 𝐼 ) |
28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = dom 𝐼 ) |
29 |
28
|
reseq2d |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( 𝐼 ↾ dom 𝐼 ) ) |
30 |
4
|
funfnd |
⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
31 |
|
fnresdm |
⊢ ( 𝐼 Fn dom 𝐼 → ( 𝐼 ↾ dom 𝐼 ) = 𝐼 ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → ( 𝐼 ↾ dom 𝐼 ) = 𝐼 ) |
33 |
23 29 32
|
3eqtrd |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = 𝐼 ) |
34 |
33 2
|
eqtrdi |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
35 |
3 9 19 34
|
vtxdeqd |
⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( VtxDeg ‘ 𝐺 ) ) |