Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusn | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euabsn | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ) | |
| 2 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 | |
| 3 | 2 | eqeq1i | ⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ↔ 𝐴 = { 𝑥 } ) | 
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) | 
| 5 | 1 4 | bitri | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |