Metamath Proof Explorer


Theorem eusn

Description: Two ways to express " A is a singleton." (Contributed by NM, 30-Oct-2010)

Ref Expression
Assertion eusn ( ∃! 𝑥 𝑥𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } )

Proof

Step Hyp Ref Expression
1 euabsn ( ∃! 𝑥 𝑥𝐴 ↔ ∃ 𝑥 { 𝑥𝑥𝐴 } = { 𝑥 } )
2 abid2 { 𝑥𝑥𝐴 } = 𝐴
3 2 eqeq1i ( { 𝑥𝑥𝐴 } = { 𝑥 } ↔ 𝐴 = { 𝑥 } )
4 3 exbii ( ∃ 𝑥 { 𝑥𝑥𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
5 1 4 bitri ( ∃! 𝑥 𝑥𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } )