Metamath Proof Explorer


Theorem eusv1

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010)

Ref Expression
Assertion eusv1 ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦𝑥 𝑦 = 𝐴 )

Proof

Step Hyp Ref Expression
1 sp ( ∀ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 )
2 sp ( ∀ 𝑥 𝑧 = 𝐴𝑧 = 𝐴 )
3 eqtr3 ( ( 𝑦 = 𝐴𝑧 = 𝐴 ) → 𝑦 = 𝑧 )
4 1 2 3 syl2an ( ( ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑥 𝑧 = 𝐴 ) → 𝑦 = 𝑧 )
5 4 gen2 𝑦𝑧 ( ( ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑥 𝑧 = 𝐴 ) → 𝑦 = 𝑧 )
6 eqeq1 ( 𝑦 = 𝑧 → ( 𝑦 = 𝐴𝑧 = 𝐴 ) )
7 6 albidv ( 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 = 𝐴 ↔ ∀ 𝑥 𝑧 = 𝐴 ) )
8 7 eu4 ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ( ∃ 𝑦𝑥 𝑦 = 𝐴 ∧ ∀ 𝑦𝑧 ( ( ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑥 𝑧 = 𝐴 ) → 𝑦 = 𝑧 ) ) )
9 5 8 mpbiran2 ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦𝑥 𝑦 = 𝐴 )