Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | eusv1 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) | |
2 | sp | ⊢ ( ∀ 𝑥 𝑧 = 𝐴 → 𝑧 = 𝐴 ) | |
3 | eqtr3 | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) → 𝑦 = 𝑧 ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑥 𝑧 = 𝐴 ) → 𝑦 = 𝑧 ) |
5 | 4 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑥 𝑧 = 𝐴 ) → 𝑦 = 𝑧 ) |
6 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝐴 ↔ 𝑧 = 𝐴 ) ) | |
7 | 6 | albidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 = 𝐴 ↔ ∀ 𝑥 𝑧 = 𝐴 ) ) |
8 | 7 | eu4 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑦 ∀ 𝑧 ( ( ∀ 𝑥 𝑦 = 𝐴 ∧ ∀ 𝑥 𝑧 = 𝐴 ) → 𝑦 = 𝑧 ) ) ) |
9 | 5 8 | mpbiran2 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |