Metamath Proof Explorer


Theorem eusv2

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 15-Oct-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypothesis eusv2.1 𝐴 ∈ V
Assertion eusv2 ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ∃! 𝑦𝑥 𝑦 = 𝐴 )

Proof

Step Hyp Ref Expression
1 eusv2.1 𝐴 ∈ V
2 1 eusv2nf ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
3 eusvnfb ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ( 𝑥 𝐴𝐴 ∈ V ) )
4 1 3 mpbiran2 ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
5 2 4 bitr4i ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ∃! 𝑦𝑥 𝑦 = 𝐴 )