Metamath Proof Explorer


Theorem eusv2i

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010) (Revised by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion eusv2i ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∃! 𝑦𝑥 𝑦 = 𝐴 )

Proof

Step Hyp Ref Expression
1 nfeu1 𝑦 ∃! 𝑦𝑥 𝑦 = 𝐴
2 nfcvd ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝑦 )
3 eusvnf ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
4 2 3 nfeqd ( ∃! 𝑦𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 )
5 4 nfrd ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) )
6 19.2 ( ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑥 𝑦 = 𝐴 )
7 5 6 impbid1 ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴 ↔ ∀ 𝑥 𝑦 = 𝐴 ) )
8 1 7 eubid ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ∃! 𝑦𝑥 𝑦 = 𝐴 ) )
9 8 ibir ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∃! 𝑦𝑥 𝑦 = 𝐴 )