| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eusv2.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
nfeu1 |
⊢ Ⅎ 𝑦 ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 |
| 3 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 𝑦 = 𝐴 |
| 4 |
3
|
nfeuw |
⊢ Ⅎ 𝑥 ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 |
| 5 |
1
|
isseti |
⊢ ∃ 𝑦 𝑦 = 𝐴 |
| 6 |
|
19.8a |
⊢ ( 𝑦 = 𝐴 → ∃ 𝑥 𝑦 = 𝐴 ) |
| 7 |
6
|
ancri |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
| 8 |
5 7
|
eximii |
⊢ ∃ 𝑦 ( ∃ 𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴 ) |
| 9 |
|
eupick |
⊢ ( ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ∧ ∃ 𝑦 ( ∃ 𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 10 |
8 9
|
mpan2 |
⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 11 |
4 10
|
alrimi |
⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → ∀ 𝑥 ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 12 |
|
nf6 |
⊢ ( Ⅎ 𝑥 𝑦 = 𝐴 ↔ ∀ 𝑥 ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 14 |
2 13
|
alrimi |
⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 15 |
|
dfnfc2 |
⊢ ( ∀ 𝑥 𝐴 ∈ V → ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) ) |
| 16 |
15 1
|
mpg |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 17 |
14 16
|
sylibr |
⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 18 |
|
eusvnfb |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |
| 19 |
1 18
|
mpbiran2 |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |
| 20 |
|
eusv2i |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ) |
| 21 |
19 20
|
sylbir |
⊢ ( Ⅎ 𝑥 𝐴 → ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ) |
| 22 |
17 21
|
impbii |
⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |