Metamath Proof Explorer


Theorem eusv4

Description: Two ways to express single-valuedness of a class expression B ( y ) . (Contributed by NM, 27-Oct-2010)

Ref Expression
Hypothesis eusv4.1 𝐵 ∈ V
Assertion eusv4 ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eusv4.1 𝐵 ∈ V
2 reusv2lem3 ( ∀ 𝑦𝐴 𝐵 ∈ V → ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 ) )
3 1 a1i ( 𝑦𝐴𝐵 ∈ V )
4 2 3 mprg ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 )