Metamath Proof Explorer
Description: Two ways to express single-valuedness of a class expression
B ( y ) . (Contributed by NM, 27-Oct-2010)
|
|
Ref |
Expression |
|
Hypothesis |
eusv4.1 |
⊢ 𝐵 ∈ V |
|
Assertion |
eusv4 |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eusv4.1 |
⊢ 𝐵 ∈ V |
2 |
|
reusv2lem3 |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
3 |
1
|
a1i |
⊢ ( 𝑦 ∈ 𝐴 → 𝐵 ∈ V ) |
4 |
2 3
|
mprg |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |