| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euex |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 3 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 4 |
3
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 5 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐴 ↔ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 7 |
2 4 6
|
spcgf |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 8 |
7
|
elv |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
| 11 |
10
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
| 12 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 13 |
12
|
eqeq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 = 𝐴 ↔ 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 14 |
9 11 13
|
spcgf |
⊢ ( 𝑤 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 15 |
14
|
elv |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 16 |
8 15
|
eqtr3d |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 17 |
16
|
alrimivv |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 18 |
|
sbnfc2 |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 19 |
17 18
|
sylibr |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 20 |
19
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 21 |
1 20
|
syl |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |