| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euex | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 3 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 4 | 3 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 5 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  =  𝐴  ↔  𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 7 | 2 4 6 | spcgf | ⊢ ( 𝑧  ∈  V  →  ( ∀ 𝑥 𝑦  =  𝐴  →  𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 8 | 7 | elv | ⊢ ( ∀ 𝑥 𝑦  =  𝐴  →  𝑦  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 10 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤  /  𝑥 ⦌ 𝐴 | 
						
							| 11 | 10 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 | 
						
							| 12 |  | csbeq1a | ⊢ ( 𝑥  =  𝑤  →  𝐴  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑦  =  𝐴  ↔  𝑦  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 14 | 9 11 13 | spcgf | ⊢ ( 𝑤  ∈  V  →  ( ∀ 𝑥 𝑦  =  𝐴  →  𝑦  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 15 | 14 | elv | ⊢ ( ∀ 𝑥 𝑦  =  𝐴  →  𝑦  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) | 
						
							| 16 | 8 15 | eqtr3d | ⊢ ( ∀ 𝑥 𝑦  =  𝐴  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) | 
						
							| 17 | 16 | alrimivv | ⊢ ( ∀ 𝑥 𝑦  =  𝐴  →  ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) | 
						
							| 18 |  | sbnfc2 | ⊢ ( Ⅎ 𝑥 𝐴  ↔  ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐴 ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( ∀ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 21 | 1 20 | syl | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝐴 ) |