Step |
Hyp |
Ref |
Expression |
1 |
|
euex |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
3 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
4 |
3
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
5 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐴 ↔ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
7 |
2 4 6
|
spcgf |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
8 |
7
|
elv |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
11 |
10
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
12 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 = 𝐴 ↔ 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
14 |
9 11 13
|
spcgf |
⊢ ( 𝑤 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
15 |
14
|
elv |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
16 |
8 15
|
eqtr3d |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
17 |
16
|
alrimivv |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
18 |
|
sbnfc2 |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
19 |
17 18
|
sylibr |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
20 |
19
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
21 |
1 20
|
syl |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |