Step |
Hyp |
Ref |
Expression |
1 |
|
eusvnf |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
2 |
|
euex |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
3 |
|
eqvisset |
⊢ ( 𝑦 = 𝐴 → 𝐴 ∈ V ) |
4 |
3
|
sps |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
5 |
4
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
6 |
2 5
|
syl |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
7 |
1 6
|
jca |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |
8 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 ) |
9 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) |
10 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
11 |
9 10
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
12 |
11
|
nf5rd |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) ) |
13 |
12
|
eximdv |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑦 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) ) |
14 |
8 13
|
syl5bi |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝐴 ∈ V → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) ) |
15 |
14
|
imp |
⊢ ( ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
16 |
|
eusv1 |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
17 |
15 16
|
sylibr |
⊢ ( ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) → ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
18 |
7 17
|
impbii |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |