Metamath Proof Explorer


Theorem eusvnfb

Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion eusvnfb ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ( 𝑥 𝐴𝐴 ∈ V ) )

Proof

Step Hyp Ref Expression
1 eusvnf ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
2 euex ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∃ 𝑦𝑥 𝑦 = 𝐴 )
3 eqvisset ( 𝑦 = 𝐴𝐴 ∈ V )
4 3 sps ( ∀ 𝑥 𝑦 = 𝐴𝐴 ∈ V )
5 4 exlimiv ( ∃ 𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V )
6 2 5 syl ( ∃! 𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V )
7 1 6 jca ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ( 𝑥 𝐴𝐴 ∈ V ) )
8 isset ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 )
9 nfcvd ( 𝑥 𝐴 𝑥 𝑦 )
10 id ( 𝑥 𝐴 𝑥 𝐴 )
11 9 10 nfeqd ( 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 )
12 11 nf5rd ( 𝑥 𝐴 → ( 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) )
13 12 eximdv ( 𝑥 𝐴 → ( ∃ 𝑦 𝑦 = 𝐴 → ∃ 𝑦𝑥 𝑦 = 𝐴 ) )
14 8 13 syl5bi ( 𝑥 𝐴 → ( 𝐴 ∈ V → ∃ 𝑦𝑥 𝑦 = 𝐴 ) )
15 14 imp ( ( 𝑥 𝐴𝐴 ∈ V ) → ∃ 𝑦𝑥 𝑦 = 𝐴 )
16 eusv1 ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦𝑥 𝑦 = 𝐴 )
17 15 16 sylibr ( ( 𝑥 𝐴𝐴 ∈ V ) → ∃! 𝑦𝑥 𝑦 = 𝐴 )
18 7 17 impbii ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ( 𝑥 𝐴𝐴 ∈ V ) )