| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eusvnf |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 2 |
|
euex |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 3 |
|
eqvisset |
⊢ ( 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 4 |
3
|
sps |
⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 5 |
4
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 6 |
2 5
|
syl |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 7 |
1 6
|
jca |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |
| 8 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 ) |
| 9 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) |
| 10 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 11 |
9 10
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 12 |
11
|
nf5rd |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) ) |
| 13 |
12
|
eximdv |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑦 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) ) |
| 14 |
8 13
|
biimtrid |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝐴 ∈ V → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) ) |
| 15 |
14
|
imp |
⊢ ( ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 16 |
|
eusv1 |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) → ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 18 |
7 17
|
impbii |
⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |