Description: Specify the same object in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eusvobj1.1 | ⊢ 𝐵 ∈ V | |
Assertion | eusvobj1 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusvobj1.1 | ⊢ 𝐵 ∈ V | |
2 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
3 | 1 | eusvobj2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
4 | 2 3 | alrimi | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
5 | iotabi | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) | |
6 | 4 5 | syl | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |