Description: Specify the same object in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eusvobj1.1 | ⊢ 𝐵 ∈ V | |
| Assertion | eusvobj1 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eusvobj1.1 | ⊢ 𝐵 ∈ V | |
| 2 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 3 | 1 | eusvobj2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) | 
| 4 | 2 3 | alrimi | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) | 
| 5 | iotabi | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |