Metamath Proof Explorer


Theorem eusvobj1

Description: Specify the same object in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypothesis eusvobj1.1 𝐵 ∈ V
Assertion eusvobj1 ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 → ( ℩ 𝑥𝑦𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥𝑦𝐴 𝑥 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eusvobj1.1 𝐵 ∈ V
2 nfeu1 𝑥 ∃! 𝑥𝑦𝐴 𝑥 = 𝐵
3 1 eusvobj2 ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 → ( ∃ 𝑦𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦𝐴 𝑥 = 𝐵 ) )
4 2 3 alrimi ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 → ∀ 𝑥 ( ∃ 𝑦𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦𝐴 𝑥 = 𝐵 ) )
5 iotabi ( ∀ 𝑥 ( ∃ 𝑦𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦𝐴 𝑥 = 𝐵 ) → ( ℩ 𝑥𝑦𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥𝑦𝐴 𝑥 = 𝐵 ) )
6 4 5 syl ( ∃! 𝑥𝑦𝐴 𝑥 = 𝐵 → ( ℩ 𝑥𝑦𝐴 𝑥 = 𝐵 ) = ( ℩ 𝑥𝑦𝐴 𝑥 = 𝐵 ) )