| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eusvobj1.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | euabsn2 | ⊢ ( ∃! 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  ∃ 𝑧 { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 } ) | 
						
							| 3 |  | eleq2 | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( 𝑥  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  ↔  𝑥  ∈  { 𝑧 } ) ) | 
						
							| 4 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  ↔  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 5 |  | velsn | ⊢ ( 𝑥  ∈  { 𝑧 }  ↔  𝑥  =  𝑧 ) | 
						
							| 6 | 3 4 5 | 3bitr3g | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  𝑥  =  𝑧 ) ) | 
						
							| 7 |  | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 | 
						
							| 8 | 7 | nfab | ⊢ Ⅎ 𝑦 { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 } | 
						
							| 9 | 8 | nfeq1 | ⊢ Ⅎ 𝑦 { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 } | 
						
							| 10 | 1 | elabrex | ⊢ ( 𝑦  ∈  𝐴  →  𝐵  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 } ) | 
						
							| 11 |  | eleq2 | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( 𝐵  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  ↔  𝐵  ∈  { 𝑧 } ) ) | 
						
							| 12 | 1 | elsn | ⊢ ( 𝐵  ∈  { 𝑧 }  ↔  𝐵  =  𝑧 ) | 
						
							| 13 |  | eqcom | ⊢ ( 𝐵  =  𝑧  ↔  𝑧  =  𝐵 ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( 𝐵  ∈  { 𝑧 }  ↔  𝑧  =  𝐵 ) | 
						
							| 15 | 11 14 | bitrdi | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( 𝐵  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  ↔  𝑧  =  𝐵 ) ) | 
						
							| 16 | 10 15 | imbitrid | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( 𝑦  ∈  𝐴  →  𝑧  =  𝐵 ) ) | 
						
							| 17 | 9 16 | ralrimi | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ∀ 𝑦  ∈  𝐴 𝑧  =  𝐵 ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝐵  ↔  𝑧  =  𝐵 ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  ∀ 𝑦  ∈  𝐴 𝑧  =  𝐵 ) ) | 
						
							| 20 | 17 19 | syl5ibrcom | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( 𝑥  =  𝑧  →  ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 21 | 6 20 | sylbid | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 22 | 21 | exlimiv | ⊢ ( ∃ 𝑧 { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 }  =  { 𝑧 }  →  ( ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 23 | 2 22 | sylbi | ⊢ ( ∃! 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ( ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 24 |  | euex | ⊢ ( ∃! 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 25 |  | rexn0 | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  𝐴  ≠  ∅ ) | 
						
							| 26 | 25 | exlimiv | ⊢ ( ∃ 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  𝐴  ≠  ∅ ) | 
						
							| 27 |  | r19.2z | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 )  →  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 29 | 24 26 28 | 3syl | ⊢ ( ∃! 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 30 | 23 29 | impbid | ⊢ ( ∃! 𝑥 ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ( ∃ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) |