Step |
Hyp |
Ref |
Expression |
1 |
|
eusvobj1.1 |
⊢ 𝐵 ∈ V |
2 |
|
euabsn2 |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑧 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } ) |
3 |
|
eleq2 |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ 𝑥 ∈ { 𝑧 } ) ) |
4 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
5 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 ) |
6 |
3 4 5
|
3bitr3g |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ 𝑥 = 𝑧 ) ) |
7 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
8 |
7
|
nfab |
⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } |
9 |
8
|
nfeq1 |
⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } |
10 |
1
|
elabrex |
⊢ ( 𝑦 ∈ 𝐴 → 𝐵 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ) |
11 |
|
eleq2 |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝐵 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ 𝐵 ∈ { 𝑧 } ) ) |
12 |
1
|
elsn |
⊢ ( 𝐵 ∈ { 𝑧 } ↔ 𝐵 = 𝑧 ) |
13 |
|
eqcom |
⊢ ( 𝐵 = 𝑧 ↔ 𝑧 = 𝐵 ) |
14 |
12 13
|
bitri |
⊢ ( 𝐵 ∈ { 𝑧 } ↔ 𝑧 = 𝐵 ) |
15 |
11 14
|
bitrdi |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝐵 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } ↔ 𝑧 = 𝐵 ) ) |
16 |
10 15
|
syl5ib |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝑦 ∈ 𝐴 → 𝑧 = 𝐵 ) ) |
17 |
9 16
|
ralrimi |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) |
18 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐵 ↔ 𝑧 = 𝐵 ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) ) |
20 |
17 19
|
syl5ibrcom |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( 𝑥 = 𝑧 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
21 |
6 20
|
sylbid |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
22 |
21
|
exlimiv |
⊢ ( ∃ 𝑧 { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 } = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
23 |
2 22
|
sylbi |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
24 |
|
euex |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
25 |
|
rexn0 |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) |
26 |
25
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) |
27 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
28 |
27
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
29 |
24 26 28
|
3syl |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
30 |
23 29
|
impbid |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |