Step |
Hyp |
Ref |
Expression |
1 |
|
euxfr2w.1 |
⊢ 𝐴 ∈ V |
2 |
|
euxfr2w.2 |
⊢ ∃* 𝑦 𝑥 = 𝐴 |
3 |
|
2euswapv |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
4 |
2
|
moani |
⊢ ∃* 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
5 |
|
ancom |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
6 |
5
|
mobii |
⊢ ( ∃* 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
7 |
4 6
|
mpbi |
⊢ ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
8 |
3 7
|
mpg |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
9 |
|
2euswapv |
⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
10 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 𝐴 |
11 |
10
|
moani |
⊢ ∃* 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
12 |
5
|
mobii |
⊢ ( ∃* 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
13 |
11 12
|
mpbi |
⊢ ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
14 |
9 13
|
mpg |
⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
15 |
8 14
|
impbii |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
16 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜑 ) ) |
17 |
1 16
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) |
18 |
17
|
eubii |
⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |
19 |
15 18
|
bitri |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |