| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euxfr2w.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | euxfr2w.2 | ⊢ ∃* 𝑦 𝑥  =  𝐴 | 
						
							| 3 |  | 2euswapv | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  →  ( ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  →  ∃! 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 4 | 2 | moani | ⊢ ∃* 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 ) | 
						
							| 5 |  | ancom | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  ↔  ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 6 | 5 | mobii | ⊢ ( ∃* 𝑦 ( 𝜑  ∧  𝑥  =  𝐴 )  ↔  ∃* 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 7 | 4 6 | mpbi | ⊢ ∃* 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 ) | 
						
							| 8 | 3 7 | mpg | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  →  ∃! 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 9 |  | 2euswapv | ⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  ( ∃! 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 10 |  | moeq | ⊢ ∃* 𝑥 𝑥  =  𝐴 | 
						
							| 11 | 10 | moani | ⊢ ∃* 𝑥 ( 𝜑  ∧  𝑥  =  𝐴 ) | 
						
							| 12 | 5 | mobii | ⊢ ( ∃* 𝑥 ( 𝜑  ∧  𝑥  =  𝐴 )  ↔  ∃* 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 13 | 11 12 | mpbi | ⊢ ∃* 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) | 
						
							| 14 | 9 13 | mpg | ⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 15 | 8 14 | impbii | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ∃! 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 16 |  | biidd | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜑 ) ) | 
						
							| 17 | 1 16 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  𝜑 ) | 
						
							| 18 | 17 | eubii | ⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ∃! 𝑦 𝜑 ) | 
						
							| 19 | 15 18 | bitri | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ∃! 𝑦 𝜑 ) |