Step |
Hyp |
Ref |
Expression |
1 |
|
euxfrw.1 |
⊢ 𝐴 ∈ V |
2 |
|
euxfrw.2 |
⊢ ∃! 𝑦 𝑥 = 𝐴 |
3 |
|
euxfrw.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
euex |
⊢ ( ∃! 𝑦 𝑥 = 𝐴 → ∃ 𝑦 𝑥 = 𝐴 ) |
5 |
2 4
|
ax-mp |
⊢ ∃ 𝑦 𝑥 = 𝐴 |
6 |
5
|
biantrur |
⊢ ( 𝜑 ↔ ( ∃ 𝑦 𝑥 = 𝐴 ∧ 𝜑 ) ) |
7 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( ∃ 𝑦 𝑥 = 𝐴 ∧ 𝜑 ) ) |
8 |
3
|
pm5.32i |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
10 |
6 7 9
|
3bitr2i |
⊢ ( 𝜑 ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
11 |
10
|
eubii |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
12 |
2
|
eumoi |
⊢ ∃* 𝑦 𝑥 = 𝐴 |
13 |
1 12
|
euxfr2w |
⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 𝜓 ) |
14 |
11 13
|
bitri |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |