| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euxfrw.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | euxfrw.2 | ⊢ ∃! 𝑦 𝑥  =  𝐴 | 
						
							| 3 |  | euxfrw.3 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 4 |  | euex | ⊢ ( ∃! 𝑦 𝑥  =  𝐴  →  ∃ 𝑦 𝑥  =  𝐴 ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ ∃ 𝑦 𝑥  =  𝐴 | 
						
							| 6 | 5 | biantrur | ⊢ ( 𝜑  ↔  ( ∃ 𝑦 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 7 |  | 19.41v | ⊢ ( ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ( ∃ 𝑦 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 8 | 3 | pm5.32i | ⊢ ( ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 10 | 6 7 9 | 3bitr2i | ⊢ ( 𝜑  ↔  ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 11 | 10 | eubii | ⊢ ( ∃! 𝑥 𝜑  ↔  ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜓 ) ) | 
						
							| 12 | 2 | eumoi | ⊢ ∃* 𝑦 𝑥  =  𝐴 | 
						
							| 13 | 1 12 | euxfr2w | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  𝜓 )  ↔  ∃! 𝑦 𝜓 ) | 
						
							| 14 | 11 13 | bitri | ⊢ ( ∃! 𝑥 𝜑  ↔  ∃! 𝑦 𝜓 ) |