| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evenelz | ⊢ ( 2  ∥  𝑁  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  2  ∈  ℤ ) | 
						
							| 4 |  | id | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℤ ) | 
						
							| 5 | 3 4 | zmulcld | ⊢ ( 𝑛  ∈  ℤ  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( 2  ·  𝑛 )  =  𝑁 )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 7 |  | eleq1 | ⊢ ( ( 2  ·  𝑛 )  =  𝑁  →  ( ( 2  ·  𝑛 )  ∈  ℤ  ↔  𝑁  ∈  ℤ ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( 2  ·  𝑛 )  =  𝑁 )  →  ( ( 2  ·  𝑛 )  ∈  ℤ  ↔  𝑁  ∈  ℤ ) ) | 
						
							| 9 | 6 8 | mpbid | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( 2  ·  𝑛 )  =  𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁  →  𝑁  ∈  ℤ ) | 
						
							| 11 |  | divides | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ·  2 )  =  𝑁 ) ) | 
						
							| 12 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 13 |  | 2cnd | ⊢ ( 𝑛  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 14 | 12 13 | mulcomd | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  ·  2 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑛  ∈  ℤ  →  ( ( 𝑛  ·  2 )  =  𝑁  ↔  ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 16 | 15 | rexbiia | ⊢ ( ∃ 𝑛  ∈  ℤ ( 𝑛  ·  2 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) | 
						
							| 17 | 11 16 | bitrdi | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 18 | 2 17 | mpan | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 19 | 1 10 18 | pm5.21nii | ⊢ ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) |