Step |
Hyp |
Ref |
Expression |
1 |
|
evenelz |
⊢ ( 2 ∥ 𝑁 → 𝑁 ∈ ℤ ) |
2 |
|
2z |
⊢ 2 ∈ ℤ |
3 |
2
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
4 |
|
id |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) |
5 |
3 4
|
zmulcld |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 2 · 𝑛 ) = 𝑁 ) → ( 2 · 𝑛 ) ∈ ℤ ) |
7 |
|
eleq1 |
⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( ( 2 · 𝑛 ) ∈ ℤ ↔ 𝑁 ∈ ℤ ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 2 · 𝑛 ) = 𝑁 ) → ( ( 2 · 𝑛 ) ∈ ℤ ↔ 𝑁 ∈ ℤ ) ) |
9 |
6 8
|
mpbid |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 2 · 𝑛 ) = 𝑁 ) → 𝑁 ∈ ℤ ) |
10 |
9
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 → 𝑁 ∈ ℤ ) |
11 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 ) ) |
12 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
13 |
|
2cnd |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) |
14 |
12 13
|
mulcomd |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 2 ) = ( 2 · 𝑛 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) = 𝑁 ↔ ( 2 · 𝑛 ) = 𝑁 ) ) |
16 |
15
|
rexbiia |
⊢ ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |
17 |
11 16
|
bitrdi |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
18 |
2 17
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
19 |
1 10 18
|
pm5.21nii |
⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |