Metamath Proof Explorer


Theorem evend2

Description: An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo and zeo2 . (Contributed by AV, 22-Jun-2021)

Ref Expression
Assertion evend2 ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 2ne0 2 ≠ 0
3 dvdsval2 ( ( 2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) )
4 1 2 3 mp3an12 ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) )