Step |
Hyp |
Ref |
Expression |
1 |
|
3odd |
⊢ 3 ∈ Odd |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 3 ∈ Odd ) |
3 |
2
|
anim1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( 3 ∈ Odd ∧ 𝑁 ∈ Even ) ) |
4 |
3
|
ancomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
5 |
|
emoo |
⊢ ( ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) → ( 𝑁 − 3 ) ∈ Odd ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( 𝑁 − 3 ) ∈ Odd ) |
7 |
|
breq2 |
⊢ ( 𝑚 = ( 𝑁 − 3 ) → ( 5 < 𝑚 ↔ 5 < ( 𝑁 − 3 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑁 − 3 ) → ( 𝑚 ∈ GoldbachOddW ↔ ( 𝑁 − 3 ) ∈ GoldbachOddW ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝑚 = ( 𝑁 − 3 ) → ( ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ↔ ( 5 < ( 𝑁 − 3 ) → ( 𝑁 − 3 ) ∈ GoldbachOddW ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = ( 𝑁 − 3 ) ) → ( ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ↔ ( 5 < ( 𝑁 − 3 ) → ( 𝑁 − 3 ) ∈ GoldbachOddW ) ) ) |
11 |
6 10
|
rspcdv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( 5 < ( 𝑁 − 3 ) → ( 𝑁 − 3 ) ∈ GoldbachOddW ) ) ) |
12 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ↔ ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁 ) ) |
13 |
|
5p3e8 |
⊢ ( 5 + 3 ) = 8 |
14 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
15 |
|
9cn |
⊢ 9 ∈ ℂ |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
|
8cn |
⊢ 8 ∈ ℂ |
18 |
15 16 17
|
subadd2i |
⊢ ( ( 9 − 1 ) = 8 ↔ ( 8 + 1 ) = 9 ) |
19 |
14 18
|
mpbir |
⊢ ( 9 − 1 ) = 8 |
20 |
13 19
|
eqtr4i |
⊢ ( 5 + 3 ) = ( 9 − 1 ) |
21 |
|
zlem1lt |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 9 ≤ 𝑁 ↔ ( 9 − 1 ) < 𝑁 ) ) |
22 |
21
|
biimp3a |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁 ) → ( 9 − 1 ) < 𝑁 ) |
23 |
20 22
|
eqbrtrid |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁 ) → ( 5 + 3 ) < 𝑁 ) |
24 |
|
5re |
⊢ 5 ∈ ℝ |
25 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 5 ∈ ℝ ) |
26 |
|
3re |
⊢ 3 ∈ ℝ |
27 |
26
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 3 ∈ ℝ ) |
28 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
29 |
25 27 28
|
3jca |
⊢ ( 𝑁 ∈ ℤ → ( 5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁 ) → ( 5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
31 |
|
ltaddsub |
⊢ ( ( 5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 5 + 3 ) < 𝑁 ↔ 5 < ( 𝑁 − 3 ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁 ) → ( ( 5 + 3 ) < 𝑁 ↔ 5 < ( 𝑁 − 3 ) ) ) |
33 |
23 32
|
mpbid |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁 ) → 5 < ( 𝑁 − 3 ) ) |
34 |
12 33
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 5 < ( 𝑁 − 3 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → 5 < ( 𝑁 − 3 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ∧ ( 𝑁 − 3 ) ∈ GoldbachOddW ) → ( 𝑁 − 3 ) ∈ GoldbachOddW ) |
37 |
|
oveq1 |
⊢ ( 𝑜 = ( 𝑁 − 3 ) → ( 𝑜 + 3 ) = ( ( 𝑁 − 3 ) + 3 ) ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑜 = ( 𝑁 − 3 ) → ( 𝑁 = ( 𝑜 + 3 ) ↔ 𝑁 = ( ( 𝑁 − 3 ) + 3 ) ) ) |
39 |
38
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ∧ ( 𝑁 − 3 ) ∈ GoldbachOddW ) ∧ 𝑜 = ( 𝑁 − 3 ) ) → ( 𝑁 = ( 𝑜 + 3 ) ↔ 𝑁 = ( ( 𝑁 − 3 ) + 3 ) ) ) |
40 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 𝑁 ∈ ℂ ) |
41 |
|
3cn |
⊢ 3 ∈ ℂ |
42 |
41
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 3 ∈ ℂ ) |
43 |
40 42
|
jca |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ∧ ( 𝑁 − 3 ) ∈ GoldbachOddW ) → ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ) ) |
46 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 𝑁 − 3 ) + 3 ) = 𝑁 ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ) → 𝑁 = ( ( 𝑁 − 3 ) + 3 ) ) |
48 |
45 47
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ∧ ( 𝑁 − 3 ) ∈ GoldbachOddW ) → 𝑁 = ( ( 𝑁 − 3 ) + 3 ) ) |
49 |
36 39 48
|
rspcedvd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ∧ ( 𝑁 − 3 ) ∈ GoldbachOddW ) → ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) ) |
50 |
49
|
ex |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( ( 𝑁 − 3 ) ∈ GoldbachOddW → ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) ) ) |
51 |
35 50
|
embantd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( ( 5 < ( 𝑁 − 3 ) → ( 𝑁 − 3 ) ∈ GoldbachOddW ) → ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) ) ) |
52 |
11 51
|
syldc |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) ) ) |