| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evenz | ⊢ ( 𝑀  ∈   Even   →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | evenz | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | zltp1le | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 5 | 1 | zred | ⊢ ( 𝑀  ∈   Even   →  𝑀  ∈  ℝ ) | 
						
							| 6 |  | peano2re | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑀  ∈   Even   →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 8 | 2 | zred | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℝ ) | 
						
							| 9 |  | leloe | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑀  +  1 )  ≤  𝑁  ↔  ( ( 𝑀  +  1 )  <  𝑁  ∨  ( 𝑀  +  1 )  =  𝑁 ) ) ) | 
						
							| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( 𝑀  +  1 )  ≤  𝑁  ↔  ( ( 𝑀  +  1 )  <  𝑁  ∨  ( 𝑀  +  1 )  =  𝑁 ) ) ) | 
						
							| 11 | 1 | peano2zd | ⊢ ( 𝑀  ∈   Even   →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 12 |  | zltp1le | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  +  1 )  <  𝑁  ↔  ( ( 𝑀  +  1 )  +  1 )  ≤  𝑁 ) ) | 
						
							| 13 | 11 2 12 | syl2anr | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( 𝑀  +  1 )  <  𝑁  ↔  ( ( 𝑀  +  1 )  +  1 )  ≤  𝑁 ) ) | 
						
							| 14 | 1 | zcnd | ⊢ ( 𝑀  ∈   Even   →  𝑀  ∈  ℂ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  𝑀  ∈  ℂ ) | 
						
							| 16 |  | add1p1 | ⊢ ( 𝑀  ∈  ℂ  →  ( ( 𝑀  +  1 )  +  1 )  =  ( 𝑀  +  2 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( 𝑀  +  1 )  +  1 )  =  ( 𝑀  +  2 ) ) | 
						
							| 18 | 17 | breq1d | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( ( 𝑀  +  1 )  +  1 )  ≤  𝑁  ↔  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 19 | 18 | biimpd | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( ( 𝑀  +  1 )  +  1 )  ≤  𝑁  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 20 | 13 19 | sylbid | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( 𝑀  +  1 )  <  𝑁  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 21 |  | evenp1odd | ⊢ ( 𝑀  ∈   Even   →  ( 𝑀  +  1 )  ∈   Odd  ) | 
						
							| 22 |  | zneoALTV | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑀  +  1 )  ∈   Odd  )  →  𝑁  ≠  ( 𝑀  +  1 ) ) | 
						
							| 23 |  | eqneqall | ⊢ ( 𝑁  =  ( 𝑀  +  1 )  →  ( 𝑁  ≠  ( 𝑀  +  1 )  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 24 | 23 | eqcoms | ⊢ ( ( 𝑀  +  1 )  =  𝑁  →  ( 𝑁  ≠  ( 𝑀  +  1 )  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 25 | 22 24 | syl5com | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑀  +  1 )  ∈   Odd  )  →  ( ( 𝑀  +  1 )  =  𝑁  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 26 | 21 25 | sylan2 | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( 𝑀  +  1 )  =  𝑁  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 27 | 20 26 | jaod | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( ( 𝑀  +  1 )  <  𝑁  ∨  ( 𝑀  +  1 )  =  𝑁 )  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 28 | 10 27 | sylbid | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 29 | 4 28 | sylbid | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even  )  →  ( 𝑀  <  𝑁  →  ( 𝑀  +  2 )  ≤  𝑁 ) ) | 
						
							| 30 | 29 | 3impia | ⊢ ( ( 𝑁  ∈   Even   ∧  𝑀  ∈   Even   ∧  𝑀  <  𝑁 )  →  ( 𝑀  +  2 )  ≤  𝑁 ) |