Step |
Hyp |
Ref |
Expression |
1 |
|
evenz |
⊢ ( 𝑀 ∈ Even → 𝑀 ∈ ℤ ) |
2 |
|
evenz |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℤ ) |
3 |
|
zltp1le |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
4 |
1 2 3
|
syl2anr |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
5 |
1
|
zred |
⊢ ( 𝑀 ∈ Even → 𝑀 ∈ ℝ ) |
6 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
7 |
5 6
|
syl |
⊢ ( 𝑀 ∈ Even → ( 𝑀 + 1 ) ∈ ℝ ) |
8 |
2
|
zred |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℝ ) |
9 |
|
leloe |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ ( ( 𝑀 + 1 ) < 𝑁 ∨ ( 𝑀 + 1 ) = 𝑁 ) ) ) |
10 |
7 8 9
|
syl2anr |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ ( ( 𝑀 + 1 ) < 𝑁 ∨ ( 𝑀 + 1 ) = 𝑁 ) ) ) |
11 |
1
|
peano2zd |
⊢ ( 𝑀 ∈ Even → ( 𝑀 + 1 ) ∈ ℤ ) |
12 |
|
zltp1le |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 1 ) < 𝑁 ↔ ( ( 𝑀 + 1 ) + 1 ) ≤ 𝑁 ) ) |
13 |
11 2 12
|
syl2anr |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( 𝑀 + 1 ) < 𝑁 ↔ ( ( 𝑀 + 1 ) + 1 ) ≤ 𝑁 ) ) |
14 |
1
|
zcnd |
⊢ ( 𝑀 ∈ Even → 𝑀 ∈ ℂ ) |
15 |
14
|
adantl |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → 𝑀 ∈ ℂ ) |
16 |
|
add1p1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + 2 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + 2 ) ) |
18 |
17
|
breq1d |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( ( 𝑀 + 1 ) + 1 ) ≤ 𝑁 ↔ ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
19 |
18
|
biimpd |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( ( 𝑀 + 1 ) + 1 ) ≤ 𝑁 → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
20 |
13 19
|
sylbid |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( 𝑀 + 1 ) < 𝑁 → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
21 |
|
evenp1odd |
⊢ ( 𝑀 ∈ Even → ( 𝑀 + 1 ) ∈ Odd ) |
22 |
|
zneoALTV |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑀 + 1 ) ∈ Odd ) → 𝑁 ≠ ( 𝑀 + 1 ) ) |
23 |
|
eqneqall |
⊢ ( 𝑁 = ( 𝑀 + 1 ) → ( 𝑁 ≠ ( 𝑀 + 1 ) → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
24 |
23
|
eqcoms |
⊢ ( ( 𝑀 + 1 ) = 𝑁 → ( 𝑁 ≠ ( 𝑀 + 1 ) → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
25 |
22 24
|
syl5com |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑀 + 1 ) ∈ Odd ) → ( ( 𝑀 + 1 ) = 𝑁 → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
26 |
21 25
|
sylan2 |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( 𝑀 + 1 ) = 𝑁 → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
27 |
20 26
|
jaod |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( ( 𝑀 + 1 ) < 𝑁 ∨ ( 𝑀 + 1 ) = 𝑁 ) → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
28 |
10 27
|
sylbid |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( ( 𝑀 + 1 ) ≤ 𝑁 → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
29 |
4 28
|
sylbid |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ( 𝑀 < 𝑁 → ( 𝑀 + 2 ) ≤ 𝑁 ) ) |
30 |
29
|
3impia |
⊢ ( ( 𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁 ) → ( 𝑀 + 2 ) ≤ 𝑁 ) |