Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( ( 2 · 𝑛 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
2 |
|
simpr |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
3 |
|
2rp |
⊢ 2 ∈ ℝ+ |
4 |
3
|
a1i |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 2 ∈ ℝ+ ) |
5 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
6 |
5
|
adantl |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
7 |
|
nn0ge0 |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → 0 ≤ ( 2 · 𝑛 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 0 ≤ ( 2 · 𝑛 ) ) |
9 |
4 6 8
|
prodge0rd |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 0 ≤ 𝑛 ) |
10 |
|
elnn0z |
⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) |
11 |
2 9 10
|
sylanbrc |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℕ0 ) |
12 |
11
|
ex |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) |
13 |
1 12
|
syl6bir |
⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( 𝑁 ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) ) |
14 |
13
|
com13 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) ) |
15 |
14
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) |
16 |
15
|
pm4.71rd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
17 |
16
|
bicomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ( 2 · 𝑛 ) = 𝑁 ) ) |
18 |
17
|
rexbidva |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
19 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
20 |
|
rexss |
⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
21 |
19 20
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
22 |
|
even2n |
⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |
23 |
22
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
24 |
18 21 23
|
3bitr4rd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ) ) |