| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( ( 2  ·  𝑛 )  =  𝑁  →  ( ( 2  ·  𝑛 )  ∈  ℕ0  ↔  𝑁  ∈  ℕ0 ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℤ ) | 
						
							| 3 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  2  ∈  ℝ+ ) | 
						
							| 5 |  | zre | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℝ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℝ ) | 
						
							| 7 |  | nn0ge0 | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  0  ≤  ( 2  ·  𝑛 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  0  ≤  ( 2  ·  𝑛 ) ) | 
						
							| 9 | 4 6 8 | prodge0rd | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  0  ≤  𝑛 ) | 
						
							| 10 |  | elnn0z | ⊢ ( 𝑛  ∈  ℕ0  ↔  ( 𝑛  ∈  ℤ  ∧  0  ≤  𝑛 ) ) | 
						
							| 11 | 2 9 10 | sylanbrc | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ0 ) ) | 
						
							| 13 | 1 12 | biimtrrdi | ⊢ ( ( 2  ·  𝑛 )  =  𝑁  →  ( 𝑁  ∈  ℕ0  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ0 ) ) ) | 
						
							| 14 | 13 | com13 | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑁  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  =  𝑁  →  𝑛  ∈  ℕ0 ) ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( 2  ·  𝑛 )  =  𝑁  →  𝑛  ∈  ℕ0 ) ) | 
						
							| 16 | 15 | pm4.71rd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( 2  ·  𝑛 )  =  𝑁  ↔  ( 𝑛  ∈  ℕ0  ∧  ( 2  ·  𝑛 )  =  𝑁 ) ) ) | 
						
							| 17 | 16 | bicomd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( 𝑛  ∈  ℕ0  ∧  ( 2  ·  𝑛 )  =  𝑁 )  ↔  ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 18 | 17 | rexbidva | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ0  ∧  ( 2  ·  𝑛 )  =  𝑁 )  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 19 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 20 |  | rexss | ⊢ ( ℕ0  ⊆  ℤ  →  ( ∃ 𝑛  ∈  ℕ0 ( 2  ·  𝑛 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ0  ∧  ( 2  ·  𝑛 )  =  𝑁 ) ) ) | 
						
							| 21 | 19 20 | mp1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∃ 𝑛  ∈  ℕ0 ( 2  ·  𝑛 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ0  ∧  ( 2  ·  𝑛 )  =  𝑁 ) ) ) | 
						
							| 22 |  | even2n | ⊢ ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 24 | 18 21 23 | 3bitr4rd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℕ0 ( 2  ·  𝑛 )  =  𝑁 ) ) |