Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( ( 2 · 𝑛 ) ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) |
2 |
|
simpr |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 2 ∈ ℝ ) |
5 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
6 |
5
|
adantl |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
7 |
|
0le2 |
⊢ 0 ≤ 2 |
8 |
7
|
a1i |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 0 ≤ 2 ) |
9 |
|
nngt0 |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ → 0 < ( 2 · 𝑛 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 0 < ( 2 · 𝑛 ) ) |
11 |
|
prodgt0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 0 ≤ 2 ∧ 0 < ( 2 · 𝑛 ) ) ) → 0 < 𝑛 ) |
12 |
4 6 8 10 11
|
syl22anc |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 0 < 𝑛 ) |
13 |
|
elnnz |
⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 ∈ ℤ ∧ 0 < 𝑛 ) ) |
14 |
2 12 13
|
sylanbrc |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℕ ) |
15 |
14
|
ex |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ ) ) |
16 |
1 15
|
syl6bir |
⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ ) ) ) |
17 |
16
|
com13 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑁 ∈ ℕ → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ ) ) ) |
18 |
17
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ ) ) |
19 |
18
|
pm4.71rd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
20 |
19
|
bicomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ( 2 · 𝑛 ) = 𝑁 ) ) |
21 |
20
|
rexbidva |
⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
22 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
23 |
|
rexss |
⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
24 |
22 23
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
25 |
|
even2n |
⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |
26 |
25
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
27 |
21 24 26
|
3bitr4rd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ) ) |