| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( ( 2  ·  𝑛 )  =  𝑁  →  ( ( 2  ·  𝑛 )  ∈  ℕ  ↔  𝑁  ∈  ℕ ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℤ ) | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  2  ∈  ℝ ) | 
						
							| 5 |  | zre | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℝ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℝ ) | 
						
							| 7 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 8 | 7 | a1i | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  0  ≤  2 ) | 
						
							| 9 |  | nngt0 | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ  →  0  <  ( 2  ·  𝑛 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  0  <  ( 2  ·  𝑛 ) ) | 
						
							| 11 |  | prodgt0 | ⊢ ( ( ( 2  ∈  ℝ  ∧  𝑛  ∈  ℝ )  ∧  ( 0  ≤  2  ∧  0  <  ( 2  ·  𝑛 ) ) )  →  0  <  𝑛 ) | 
						
							| 12 | 4 6 8 10 11 | syl22anc | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  0  <  𝑛 ) | 
						
							| 13 |  | elnnz | ⊢ ( 𝑛  ∈  ℕ  ↔  ( 𝑛  ∈  ℤ  ∧  0  <  𝑛 ) ) | 
						
							| 14 | 2 12 13 | sylanbrc | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℕ ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ ) ) | 
						
							| 16 | 1 15 | biimtrrdi | ⊢ ( ( 2  ·  𝑛 )  =  𝑁  →  ( 𝑁  ∈  ℕ  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ ) ) ) | 
						
							| 17 | 16 | com13 | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑛 )  =  𝑁  →  𝑛  ∈  ℕ ) ) ) | 
						
							| 18 | 17 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  ( ( 2  ·  𝑛 )  =  𝑁  →  𝑛  ∈  ℕ ) ) | 
						
							| 19 | 18 | pm4.71rd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  ( ( 2  ·  𝑛 )  =  𝑁  ↔  ( 𝑛  ∈  ℕ  ∧  ( 2  ·  𝑛 )  =  𝑁 ) ) ) | 
						
							| 20 | 19 | bicomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  ( ( 𝑛  ∈  ℕ  ∧  ( 2  ·  𝑛 )  =  𝑁 )  ↔  ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 21 | 20 | rexbidva | ⊢ ( 𝑁  ∈  ℕ  →  ( ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ  ∧  ( 2  ·  𝑛 )  =  𝑁 )  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 22 |  | nnssz | ⊢ ℕ  ⊆  ℤ | 
						
							| 23 |  | rexss | ⊢ ( ℕ  ⊆  ℤ  →  ( ∃ 𝑛  ∈  ℕ ( 2  ·  𝑛 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ  ∧  ( 2  ·  𝑛 )  =  𝑁 ) ) ) | 
						
							| 24 | 22 23 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  ( ∃ 𝑛  ∈  ℕ ( 2  ·  𝑛 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ  ∧  ( 2  ·  𝑛 )  =  𝑁 ) ) ) | 
						
							| 25 |  | even2n | ⊢ ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 2  ·  𝑛 )  =  𝑁 ) ) | 
						
							| 27 | 21 24 26 | 3bitr4rd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℕ ( 2  ·  𝑛 )  =  𝑁 ) ) |