Metamath Proof Explorer


Theorem evenp1odd

Description: The successor of an even number is odd. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion evenp1odd ( 𝑍 ∈ Even → ( 𝑍 + 1 ) ∈ Odd )

Proof

Step Hyp Ref Expression
1 evenz ( 𝑍 ∈ Even → 𝑍 ∈ ℤ )
2 1 peano2zd ( 𝑍 ∈ Even → ( 𝑍 + 1 ) ∈ ℤ )
3 iseven ( 𝑍 ∈ Even ↔ ( 𝑍 ∈ ℤ ∧ ( 𝑍 / 2 ) ∈ ℤ ) )
4 zcn ( 𝑍 ∈ ℤ → 𝑍 ∈ ℂ )
5 pncan1 ( 𝑍 ∈ ℂ → ( ( 𝑍 + 1 ) − 1 ) = 𝑍 )
6 4 5 syl ( 𝑍 ∈ ℤ → ( ( 𝑍 + 1 ) − 1 ) = 𝑍 )
7 6 eqcomd ( 𝑍 ∈ ℤ → 𝑍 = ( ( 𝑍 + 1 ) − 1 ) )
8 7 oveq1d ( 𝑍 ∈ ℤ → ( 𝑍 / 2 ) = ( ( ( 𝑍 + 1 ) − 1 ) / 2 ) )
9 8 eleq1d ( 𝑍 ∈ ℤ → ( ( 𝑍 / 2 ) ∈ ℤ ↔ ( ( ( 𝑍 + 1 ) − 1 ) / 2 ) ∈ ℤ ) )
10 9 biimpa ( ( 𝑍 ∈ ℤ ∧ ( 𝑍 / 2 ) ∈ ℤ ) → ( ( ( 𝑍 + 1 ) − 1 ) / 2 ) ∈ ℤ )
11 3 10 sylbi ( 𝑍 ∈ Even → ( ( ( 𝑍 + 1 ) − 1 ) / 2 ) ∈ ℤ )
12 isodd2 ( ( 𝑍 + 1 ) ∈ Odd ↔ ( ( 𝑍 + 1 ) ∈ ℤ ∧ ( ( ( 𝑍 + 1 ) − 1 ) / 2 ) ∈ ℤ ) )
13 2 11 12 sylanbrc ( 𝑍 ∈ Even → ( 𝑍 + 1 ) ∈ Odd )