| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2a1 | 
							⊢ ( 𝑃  =  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝑃  ≠  2  ↔  ¬  𝑃  =  2 )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimpri | 
							⊢ ( ¬  𝑃  =  2  →  𝑃  ≠  2 )  | 
						
						
							| 4 | 
							
								3
							 | 
							anim2i | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ancoms | 
							⊢ ( ( ¬  𝑃  =  2  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylibr | 
							⊢ ( ( ¬  𝑃  =  2  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oddprmALTV | 
							⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈   Odd  )  | 
						
						
							| 9 | 
							
								
							 | 
							oddneven | 
							⊢ ( 𝑃  ∈   Odd   →  ¬  𝑃  ∈   Even  )  | 
						
						
							| 10 | 
							
								9
							 | 
							pm2.21d | 
							⊢ ( 𝑃  ∈   Odd   →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) )  | 
						
						
							| 11 | 
							
								7 8 10
							 | 
							3syl | 
							⊢ ( ( ¬  𝑃  =  2  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							⊢ ( ¬  𝑃  =  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) )  | 
						
						
							| 13 | 
							
								1 12
							 | 
							pm2.61i | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							2evenALTV | 
							⊢ 2  ∈   Even   | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑃  =  2  →  ( 𝑃  ∈   Even   ↔  2  ∈   Even  ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpbiri | 
							⊢ ( 𝑃  =  2  →  𝑃  ∈   Even  )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							impbid1 | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   ↔  𝑃  =  2 ) )  |