Step |
Hyp |
Ref |
Expression |
1 |
|
2a1 |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Even → 𝑃 = 2 ) ) ) |
2 |
|
df-ne |
⊢ ( 𝑃 ≠ 2 ↔ ¬ 𝑃 = 2 ) |
3 |
2
|
biimpri |
⊢ ( ¬ 𝑃 = 2 → 𝑃 ≠ 2 ) |
4 |
3
|
anim2i |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
5 |
4
|
ancoms |
⊢ ( ( ¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
6 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( ¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
8 |
|
oddprmALTV |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ Odd ) |
9 |
|
oddneven |
⊢ ( 𝑃 ∈ Odd → ¬ 𝑃 ∈ Even ) |
10 |
9
|
pm2.21d |
⊢ ( 𝑃 ∈ Odd → ( 𝑃 ∈ Even → 𝑃 = 2 ) ) |
11 |
7 8 10
|
3syl |
⊢ ( ( ¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∈ Even → 𝑃 = 2 ) ) |
12 |
11
|
ex |
⊢ ( ¬ 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Even → 𝑃 = 2 ) ) ) |
13 |
1 12
|
pm2.61i |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Even → 𝑃 = 2 ) ) |
14 |
|
2evenALTV |
⊢ 2 ∈ Even |
15 |
|
eleq1 |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ Even ↔ 2 ∈ Even ) ) |
16 |
14 15
|
mpbiri |
⊢ ( 𝑃 = 2 → 𝑃 ∈ Even ) |
17 |
13 16
|
impbid1 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Even ↔ 𝑃 = 2 ) ) |